domingo, 6 de noviembre de 2016

El código genético

Tanto el ARN como el ADN están compuestos por la combinación de cuatro bases diferentes (se puede decir que es como un alfabeto de cuatro letras). ¿Cómo es esta combinación? Si cada aminoácido estuviera codificado sólo por dos bases habría un total de 42=16 posibilidades, pero esto no puede ser así, ya que los aminoácidos encontrados en las proteínas son 20. Necesitamos combinar más bases. Entonces, si combinamos tres bases (tripletes) para formar un aminoácido, obtenemos un total de 64 combinaciones (43=64)... pero ahora "sobran" 44 tripletes. En esa situación se encontraron Har Gobind Khorana y Marshall Nirenberg en la década de 1960.
Estos científicos demostraron que hay 61 tripletes -o codones- que codifican aminoácidos, muchos de los cuales son codificados por más de un codón, por lo que se dice que el código está degenerado. Los distintos aminoácidos son codificados por un número diferente de codones (algunos por 1, otros por 2, o por 3), e incluso existen tres tripletes que no codifican para ningún aminoácido. En resumen: de los 64 codones, 61 codifican aminoácidos y los tres restantes no son codificantes sino que son utilizados como señales de terminación.
Este código es casi universal: es el mismo en todos los organismos. Sin embargo, el código genético mitocondrial es diferente del nuclear y se transmite de manera independiente. De esto hablaremos en el siguiente título.

Cuadro. Código genético. Cada uno de los aminoácidos o señales de terminación está codificado por uno o más tripletes de ARN.

El genoma mitocondrial

En las células eucariotas la mayor parte de la información genética está contenida en el núcleo. Sin embargo, en estas células hay dos tipos de organelas que tienen su propio genoma. Estas organelas son las mitocondrias (centrales energéticas de la célula) y los cloroplastos (presentes solo en eucariotas fotosintéticos).

El genoma mitocondrial es una molécula de ADN circular que contiene 16.569 pares de bases y codifica 13 proteínas, 2 ARN ribosomal (ARNr) y 22 ARN de transferencia (ARNt). El código genético que utiliza es degenerado, es decir, ciertos codones en la mitocondria corresponden a aminoácidos diferentes de los utilizados por el genoma nuclear. Sin embargo, depende de muchas proteínas nucleares para poder replicarse y, a su vez, muchas proteínas presentes en las mitocondrias son codificadas por el genoma nuclear.

En mamíferos, cada mitocondria contiene entre 5 y 10 moléculas idénticas de ADN, cada una de aproximadamente 16.000 nucleótidos. Dado que una célula puede tener cientos de mitocondrias, el genoma mitocondrial representa casi el 1% del genoma total. Este genoma es de suma utilidad en el estudio de ciertas enfermedades hereditarias, debido a que las mitocondrias se heredan solamente por la línea materna (ya que las mitocondrias del espermatozoide no ingresan al óvulo). Todos los hermanos nacidos de una misma madre (sean varones o mujeres) pueden ser identificados como tales analizando ciertos marcadores mitocondriales. De hecho, estos marcadores deberían ser iguales entre los hermanos de la madre "los tíos", los primos hijos de hermanas mujeres de la madre, y así sucesivamente, siguiendo siempre la línea materna.

Estructura del ADN

En la década de los cincuenta, el campo de la biología fue convulsionado por el desarrollo del modelo de la estructura del ADN. James Watson y Francis Crick en 1953 demostraron que consiste en una doble hélice formada por dos cadenas.

El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:

1.- un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa),
2.- un grupo fosfato y
3.- una base nitrogenada
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denomina nucleósido.

Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.

Los extremos de cada una de las hebras del ADN son denominados 5'-P (fosfato) y 3'-OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5' 3' y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.

Estructura del ADN. El ácido desoxirribonucleico es un polímero de dos cadenas antiparalelas (orientación 5' 3' y 3' 5'). Cada cadena está compuesta por unidades de un azúcar (desoxirribosa), un fosfato y una base nitrogenada unidas entre si por enlaces fosfodiéster. Las bases presentes en el ADN son: adenina (A), timina (T), citosina (C) y guanina (G). Para recordar cómo aparean entre sí las bases podemos pensar en las iniciales de dos grandes personajes del tango: Aníbal Troilo (adenina es la base complementaria de timina) y Carlos Gardel (citosina es la complementaria a guanina).

sábado, 22 de octubre de 2016

¿Qué son las enzimas?

ENZIMAS

Función biológica de las proteínas

Así como los polisacáridos se reducen a ser sustancias de reserva o moléculas estructurales, las proteínas asumen funciones muy variadas gracias a su gran hetereogeneidad estructural. Describir las funciones de las proteínas equivale a describir en términos moleculares todos los fenómenos biológicos. Podemos destacar las siguientes:

función enzimática
función hormonal
función de reconocimiento de señales
función de transporte
función estructural
función de defensa
función de movimiento
función de reserva
transducción de señales
función reguladora


Muchas proteínas ejercen a la vez más de una de las funciones enumeradas: Las proteínas de membrana tienen tanto función estructural como enzimática; la ferritina es una proteína que transporta y, a la vez, almacena el hierro; la miosina interviene en la contracción muscular, pero también funciona como un enzima capaz de hidrolizar el ATP, y así se podrían poner muchos ejemplos más.
Función enzimática

La gran mayoría de las reacciones metabólicas tienen lugar gracias a la presencia de un catalizador de naturaleza proteica específico para cada reacción. Estos biocatalizadores reciben el nombre de enzimas. La gran mayoría de las proteínas son enzimas.


Función hormonal

Las hormonas son sustancias producidas por una célula y que una vez secretadas ejercen su acción sobre otras células dotadas de un receptor adecuado. Algunas hormonas son de naturaleza proteica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la hormona del crecimiento, o la calcitonina (que regula el metabolismo del calcio).
Estructura primaria de la insulina
Función de reconocimiento de señales

La superficie celular alberga un gran número de proteínas encargadas del reconocimiento de señales químicas de muy diverso tipo. Existen receptores hormonales, de neurotransmisores, de anticuerpos, de virus, de bacterias, etc. En muchos casos, los ligandos que reconoce el receptor (hormonas y neurotransmisores) son, a su vez, de naturaleza proteica.
Función de transporte

En los seres vivos son esenciales los fenómenos de transporte, bien para llevar una molécula hidrofóbica a través de un medio acuoso (transporte de oxígeno o lípidos a través de la sangre) o bien para transportar moléculas polares a través de barreras hidrofóbicas (transporte a través de la membrana plasmática). Los transportadores biológicos son siempre proteínas.
Función estructural

Las células poseen un citoesqueleto de naturaleza proteica que constituye un armazón alrededor del cual se organizan todos sus componentes, y que dirige fenómenos tan importantes como el transporte intracelular o la división celular. En los tejidos de sostén (conjuntivo, óseo, cartilaginoso) de los vertebrados, las fibras de colágeno forman parte importante de la matriz extracelular (de color claro en la Figura) y son las encargadas de conferir resistencia mecánica tanto a la tracción como a la compresión.


Función de defensa

La propiedad fundamental de los mecanismos de defensa es la de discriminar lo propio de lo extraño. En bacterias, una serie de proteínas llamadas endonucleasas de restricción se encargan de identificar y destruir aquellas moléculas de DNA que no identifica como propias (en la parte inferior de la figura de abajo).

Función de movimiento

Todas las funciones de motilidad de los seres vivos están relacionadas con las proteínas. Así, la contracción del músculo resulta de la interacción entre dos proteínas, la actina y la miosina.
Función de reserva

La ovoalbúmina de la clara de huevo, la lactoalbúmina de la leche, la gliadina del grano de trigo y la hordeína de la cebada, constituyen una reserva de aminoácidos para el futuro desarrollo del embrión.


Transducción de señales

Los fenómenos de transducción (cambio en la naturaleza físico-química de señales) están mediados por proteínas. Así, durante el proceso de la visión, la rodopsina de la retina convierte (o mejor dicho, transduce) un fotón luminoso (una señal física) en un impulso nervioso (una señal eléctrica), y un receptor hormonal convierte una señal química (una hormona) en una serie de modificaciones en el estado funcional de la célula.


Función reguladora

Muchas proteínas se unen al DNA y de esta forma controlan la transcripción génica. De esta forma el organismo se asegura de que la célula, en todo momento, tenga todas las proteínas necesarias para desempeñar normalmente sus funciones. Las distintas fases del ciclo celular son el resultado de un complejo mecanismo de regulación desempeñado por proteínas como la ciclina.

Relación estructura y función en las proteínas

Las proteínas son las macromoléculas más versátiles de cuantas existen en la materia viva: desempeñan un elevado número de funciones biológicas diferentes. Cada proteína está especializada en llevar a cabo una determinada función.
Entre las funciones de las proteínas cabe destacar las siguientes: catalíticas, estructurales, de transporte, nutrientes y de reserva, contráctiles o mótiles, de defensa, reguladoras del metabolismo, y otras muchas que determinadas proteínas desempeñan en organismos concretos.
La función de una proteína depende de la interacción de la misma con una molécula a la que llamamos ligando (en el caso particular de los enzimas el ligando recibe el nombre de sustrato). El ligando es específico de cada proteína. A su vez, la interacción entre proteína y ligando reside en un principio de complementariedad estructural: el ligando debe encajar en un hueco existente en la superficie de la proteína (el centro activo) tal y como lo haría una llave en una cerradura.

Sólo aquel o aquellos ligandos capaces de acoplarse en el centro activo de la proteína serán susceptibles de interactuar con ella.
Hay que tener en cuenta que este acoplamiento no es meramente espacial, sino que la proteína "ve" en su ligando, además de la forma, la distribución de cargas eléctricas, sus distintos grupos funcionales, y, en general, las posibilidades de establecer interacciones débiles con él a través de los grupos R de los aminoácidos que rodean el centro activo (el ligando "atraca" en el centro activo como lo haría un barco en un muelle, se establecen entre ambos "amarras" en forma de interacciones débiles que hacen más estable la asociación).

De lo anteriormente expuesto es fácil deducir que para que una proteína desempeñe su función biológica debe permanecer intacta su conformación tridimensional nativa. Si se pierde dicha conformación, y por lo tanto se altera la estructura del centro activo, ya no habrá acoplamiento entre proteína y ligando (no se "reconocerán") y la interacción entre ambos, de la que depende la función, ya no tendrá lugar. Como corolario de este razonamiento podemos afirmar que la función biológica de una proteína depende de su conformación tridimensional.
En resumen, la secuencia de aminoácidos de una proteína determina su conformación tridimensional, y ésta, a su vez, su función biológica.

Las proteínas como moléculas ejecutoras

Proteínas
Definición
Son polímeros lineales de L-aminoácidos unidos mediante enlace peptídico. Las proteínas son macromoléculas muy versátiles, que desempeñan tanto funciones estructurales como dinámicas.
Aminoácidos
Los aminoácidos son las moléculas unitarias, los monómeros de las proteínas. Todos los aminoácidos tienen una estructura común, que consiste en un átomo de carbono, el carbono alfa unido a un grupo carboxilo, un grupo amino y un átomo de Hidrógeno. La cuarta valencia del carbono alfa se completa con un grupo atómico de estructura variable, al que identificaremos como R (por Radical).

En el aminoácido de estructura más sencilla, la glicina, el R es un átomo de Hidrógeno. 
Exceptuando la glicina, en todos los demás aminoácidos el carbono alfa es un carbono asimétrico o quiral. Así se denomina a los átomos de carbono unidos a cuatro grupos atómicos diferentes. 
Las moléculas que, como los aminoácidos, tienen carbonos asimétricos, presentan isomería óptica. Es decir, por cada carbono asimétrico existen dos formas isoméricas, llamadas isómeros ópticos, que son imágenes especulares una de la otra. Los isómeros ópticos pertenecen a las series D o L. Los aminoácidos utilizados por los seres vivos son siempre de la serie L. Éstos se representan con el grupo amino ubicado a la izquierda.


En solución acuosa, los aminoácidos por lo general tienen carga eléctrica, ya que tanto el grupo amino como el carboxilo son ionizables. El grupo amino es básico y adquiere carga positiva cuando capta un protón. El grupo carboxilo, en tanto ácido, puede ceder un protón y adquirir carga negativa. Según la concentración de protones libres disponibles en el medio donde se encuentre (según el pH), el aminoácido será un catión, un anión, o un ión dipolar, si ambos grupos se ionizan simultáneamente.
Se dice que los aminoácidos son anfolitos o anfóteros, pues tienen la capacidad de comportarse como bases o como ácidos; esta capacidad los faculta para actuar como amortiguadores del pH.
El grupo R o Radical de los aminoácidos es diferente para cada uno de ellos. Existen 20 radicales diferentes; por lo tanto, 20 clases de aminoácidos distintos forman las proteínas.
Si bien los 20 aminoácidos son necesarios, hay 8 de ellos que la especie humana no puede sintetizar y debe adquirir con la alimentación; son los llamados aminoácidos esenciales.
Según la composición de sus radicales, los aminoácidos se clasifican en apolares, polares con densidad de carga y polares con tendencia a ionizarse, es decir, con tendencia a adquirir carga neta. Entre los últimos están los aminoácidos básicos y los ácidos, que son los que llevan otro grupo amino o carboxilo, respectivamente, en su radical.
Enlace peptídico
Es el enlace que establecen entre sí los aminoácidos. El enlace peptídico se produce al reaccionar el grupo amino de un aminoácido con el grupo carboxilo de otro aminoácido. Los aminoácidos así combinados se llaman restos o residuos de aminoácidos.
Al formarse la unión peptídica se desprende una molécula de agua. De manera que la reacción en la cual se enlazan los aminoácidos es una condensación. La inversa, en la cual el enlace peptídico se rompe y se obtienen aminoácidos libres, es una hidrólisis. 

Péptidos
Una cadena que contiene dos o más residuos de aminoácidos es un péptido. Hasta diez residuos se la llama oligopéptido y por encima de diez residuos, polipéptido. Una proteína es un polipéptido de alto peso molecular, pero el límite entre ambos es arbitrario y varía según los autores.
Los péptidos presentan dos extremos distintos: el N-terminal y el C-terminal. El N-terminal es el que tiene un residuo de aminoácido con grupo amino libre; este residuo es considerado el primero de la cadena. El extremo C-terminal es el que tiene un residuo de aminoácido con el grupo carboxilo libre; éste es considerado el último residuo de la cadena.

Niveles estructurales de las proteínas

Todas las proteínas son cadenas de alto peso molecular formadas por residuos de aminoácidos. ¿En qué se diferencia una proteína de otra? Las proteínas se diferencian, en primer lugar, por el número, tipo y orden de los aminoácidos que constituyen su cadena. La secuencia de aminoácidos que presenta una proteína particular se denomina estructura primaria

En algunas proteínas hay más de un residuo del aminoácido cisteína, que lleva un grupo sulfhidrilo en su radical. Dos residuos de cisteína pueden establecer una unión covalente entre los átomos de azufre, el puente disulfuro. La posición de los puentes disulfuro, cuando están presentes, forma parte de la estructura primaria.
Además de una secuencia particular de aminoácidos, las proteínas se pliegan sobre sí mismas, adoptando una estructura espacial determinada, o conformación nativa. Cada proteína adopta siempre la misma conformación nativa, si las condiciones del medio lo permiten. Esto indica que la forma de una proteína depende de su estructura primaria.
El primer nivel de plegamiento de una proteína es su estructura secundaria. La estructura secundaria puede ser regular, como la alfa hélice o la hoja plegada beta, o no seguir un patrón regular, en cuyo caso es de tipo aleatoria.
Las estructuras secundarias se originan porque se establecen uniones puentes de hidrógeno entre los restos amino y carboxilo de aminoácidos que están relativamente distantes en la estructura primaria, produciendo así un acercamiento entre ellos.
La estructura terciaria es la disposición global que adoptan en el espacio las distintas regiones de una proteína, después de haber adquirido su estructura secundaria. Esta disposición depende de interacciones que se establecen entre radicales, en general bastante alejados en la estructura primaria. Entre dichas interacciones se cuentan: uniones iónicas, puentes de hidrógeno, interacciones hidrofóbicas (todas ellas uniones no covalentes) y puentes disulfuro.
Algunas proteínas tienen estructura cuaternaria. Esta estructura se alcanza cuando la proteína está formada por dos o más cadenas polipeptídicas unidas entre sí por uniones no covalentes entre los radicales. A cada una de las cadenas que constituyen la proteína se le da el nombre de protómero o subunidad. Las proteínas de estructura cuaternaria también se conocen como proteínas oligoméricas.

Desnaturalización
La desnaturalización es la destrucción de la conformación nativa de una proteína, sin que se vea afectada su estructura primaria. La proteína conserva la cadena, pero no su estructura espacial. Cuando una proteína se desnaturaliza, la función biológica se pierde, ya que ésta se halla estrechamente ligada a la forma.
Dado que la conformación nativa de una proteína está sostenida por uniones relativamente débiles, muchos agentes son capaces de afectarla, por ejemplo: calor, radiaciones, congelamientos repetidos, grandes presiones, ácidos o bases muy concentrados que provocan marcados cambios de pH, algunos solventes orgánicos, etc.

Funciones de las proteínas
Las proteínas desempeñan infinidad de funciones: hormonal, de sostén, contráctil, de transporte, de defensa, regulación genética, recepción de señales, enzimática y muchas otras. También pueden ser oxidadas para la producción de energía (rinden 4 Kcal/g) aunque no se reservan con este fin.
Todos hemos oído hablar de la información genética y se sabe que esta información, guardada en las moléculas de ADN, es la responsable de las características de un organismo y de las diferencias entre una planta y un perro, o entre dos personas. Lo que no todos saben es que la información que guarda el ADN es la información para fabricar proteínas. No heredamos el color de pelo, o la estatura, heredamos recetas con las instrucciones para elaborar determinadas proteínas. Luego, las proteínas son las encargadas de dotar al organismo de su estructura, su función y sus características propias.

Enzimas

Las enzimas son proteínas de estructura terciaria o cuaternaria que cumplen la función de catalizadores biológicos, acelerando las reacciones químicas del metabolismo. Las enzimas hacen que la velocidad de las reacciones sea compatible con la vida. Sin enzimas, no existiría el metabolismo.
El mecanismo de acción de las enzimas ha sido explicado mediante el modelo de llave-cerradura. Cada enzima presenta un sitio (como un bolsillo en la estructura de la molécula) llamado sitio activo, donde encajan los sustratos de las reacciones químicas, tal como una llave encaja en su cerradura. La unión del sustrato al sitio activo facilita la formación del producto. Una vez formado, el producto se libera del sitio activo y la enzima se recupera sin cambios.
Este mecanismo de acción explica algunas propiedades de las enzimas: actúan a muy bajas concentraciones y son específicas.
Actúan a muy bajas concentraciones debido a que su estructura no resulta alterada al finalizar la reacción y, por lo tanto, la misma molécula de enzima puede catalizar sucesivas reacciones.
Son específicas: dado que la catálisis requiere el ingreso del sustrato al sitio activo, el sustrato y la enzima no solo deben tener afinidad química, sino también una forma complementaria. La misma enzima, en general, no admite sustratos distintos, como una cerradura no admite diferentes llaves.
Otra propiedad muy importante de las enzimas es que son regulables: ciertas sustancias pueden actuar como moduladores de la actividad enzimática, acrecentándola o disminuyéndola. También existen mecanismos como “interruptores” que pueden “encender” o “apagar” una enzima, controlando así el metabolismo por medio de su actividad.
Por último, se debe tener en cuenta que las enzimas son proteínas. Esto las hace pasibles de ser afectadas por distintos agentes desnaturalizantes. Una enzima desnaturalizada pierde su capacidad de catalizador, es decir, pierde su función específica.

Proteínas

El término proteína deriva del griego "proteos" (lo primero, lo principal) y habla de su gran importancia para los seres vivos. La importancia de las proteínas es, en un primer análisis, cuantitativa: constituyen el 50% del peso seco de la célula (15% del peso total) por lo que representan la categoría de biomoléculas más abundante después del agua.

Sin embargo su gran importancia biológica reside, más que en su abundancia en la materia viva, en el elevado número de funciones biológicas que desempeñan, en su gran versatilidad funcional y sobre todo en la particular relación que las une con los ácidos nucleicos, ya que constituyen el vehículo habitual de expresión de la información genética contenida en éstos últimos.

Composición de las proteínas

Desde el punto de vista de su composición elemental todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno, mientras que casi todas contienen además azufre (Cabe resaltar que en azúcares y lípidos el nitrógeno sólo aparece en algunos de ellos). Hay otros elementos que aparecen solamente en algunas proteínas (fósforo, cobre, zinc, hierro, etc.).
Las proteínas son biomoléculas de elevado peso molecular (macromoléculas) y presentan una estructura química compleja. Sin embargo, cuando se someten a hidrólisis ácida, se descomponen en una serie de compuestos orgánicos sencillos de bajo peso molecular: los α-aminoácidos. Este rasgo lo comparten las proteínas con otros tipos de macromoléculas: todas son polímeros complejos formados por la unión de unos pocos monómeros o sillares estructurales de bajo peso molecular. Existen 20 α-aminoácidos diferentes que forman parte de las proteínas.
En las moléculas proteicas los sucesivos restos aminoácidos se hallan unidos covalentemente entre sí formando largos polímeros no ramificados. El tipo de enlace que los une recibe el nombre de enlace peptídico. Las cadenas de aminoácidos de las proteínas no son polímeros al azar, de longitud indefinida, cada una de ellas posee una determinada composición química, un peso molecular y una secuencia ordenada de aminoácidos.

Clasificación de las proteínas

Las proteínas se clasifican en dos clases principales atendiendo a su composición. Las proteínas simples u holoproteínas son las que están compuestas exclusivamente por aminoácidos. Las proteínas conjugadas o heteroproteínas son las que están compuestas por aminoácidos y otra sustancia de naturaleza no proteica que recibe el nombre de grupo prostético. Las proteínas conjugadas pueden a su vez clasificarse en función de la naturaleza de su grupo prostético. Así, se habla de glucoproteínas, cuando el grupo prostético es un glúcido, lipoproteínas cuando es un lípido, metaloproteínas cuando es un ion metálico, fosfoproteínas cuando es un grupo fosfato, etc.
Otro criterio de clasificación de las proteínas es la forma tridimensional de su molécula. Las proteínas fibrosas son de forma alargada, generalmente son insolubles en agua y suelen tener una función estructural, mientras que las proteínas globulares forman arrollamientos compactos de forma globular y suelen tener funciones de naturaleza dinámica (catalíticas, de transporte, etc).

sábado, 8 de octubre de 2016

Regulación de las hormonas sexuales masculinas

Las células de Leydig ubicadas en el testículo, por fuera de los túbulos seminíferos, son el lugar de síntesis de la hormona testosterona. La testosterona pasa a la circulación sanguínea. La testosterona, a través de un mecanismo de retroalimentación negativa, inhibe la secreción de gonadotropinas. La hormona luteinizante (LH), producida en la hipófisis, es la hormona reguladora específica de la producción de testosterona. 
Las células testiculares de Sertoli, localizadas en los túbulos seminíferos, tienen como función principal el control de la espermatogénesis y su función biológica es regulada por la gonadotropina FSH u hormona folículoestimulante. Las células de Sertoli secretan una serie de proteínas, algunas de las cuales entran al lumen del túbulo seminífero y son importantes para la espermatogénesis. Una de las hormonas es la inhibina, y su función principal es inhibir la secreción de la FSH.
Los cambios asociados al comienzo de la adolescencia masculina están relacionados con el desarrollo del eje hipotalámico–hipofisiario–testicular.

Eje hipotalámico–hipofisiario–testicular

Al comenzar la pubertad, el hipotálamo empieza a aumentar gradualmente la secreción de hormonas liberadoras de gonadotrofinas (GnRH), las que estimulan al lóbulo anterior de la hipófisis para que secrete FSH y LH.
Estas hormonas actúan sobre los testículos, estimulando la producción de la testosterona (hormona sexual masculina), con la cual aparecen los caracteres sexuales secundarios y el desarrollo de los caracteres primarios.

Hormonas, crecimiento y desarrollo

La adolescencia es un período complejo en el desarrollo de cualquier persona e involucra una serie de cambios físicos, psicológicos y hormonales que permiten adquirir la capacidad de reproducirse.
La pubertad está asociada a un crecimiento rápido y a la aparición de las características sexuales secundarias, mientras que la adolescencia es un período de transición entre la pubertad y la edad adulta. La adolescencia comienza con la aparición de los caracteres sexuales secundarios y termina cuando cesa el crecimiento somático o del cuerpo.
El ser humano presenta una diferenciación de sexos que puede verse incluso antes del nacimiento y viene determinada por el aparato genital femenino (ovarios, útero y vagina) y masculino (pene y testículos), los que constituyen los caracteres sexuales primarios. Pero, al transformarse en adulto, aparecen diferencias de tipo corporal entre los dos sexos; tales diferencias constituyen los caracteres sexuales secundarios.

En la mujer las características que aparecen son las siguientes:
- Crecimiento de los huesos.
- Aumento del tamaño de las glándulas mamarias.
- Ensanchamiento de las caderas.
- Crecimiento del vello en las axilas y en la zona púbica.
- Aparición de la menstruación.
- Aumento de la actividad de las glándulas sebáceas.

Por su parte, los hombres presentan, entre otros, los siguientes cambios:
- Crecimiento de los huesos.
- Desarrollo muscular.
- Aumento del espesor de la piel.
- Crecimiento del vello en las axilas, el bigote, la barba, el tórax, las piernas, los brazos y el pubis.
- Eyaculación, que algunas veces ocurre durante el sueño.
- Aumento de la actividad de las glándulas sebáceas.

Los cambios corporales y hormonales afectan con frecuencia el estado emocional de los adolescentes.
Los hombres pueden estar preocupados por la falta o exceso de vello, la aparición del bigote, la fortaleza de los músculos, los cambios de la voz y la primera eyaculación. Las mujeres pueden sentir vergüenza por el tamaño de los senos, o preocuparse por la forma de las piernas, la acumulación de la grasa en el cuerpo y el inicio temprano o tardío de la menstruación.

Ejercicios

1. ¿Cómo explicarías las siguientes situaciones?
- La destrucción del lóbulo anterior de la hipófisis en animales o por alguna patología en humanos, produce atrofia testicular y regresión de las características sexuales secundarias.
- La inoculación de LH en la sangre de un ratón aumenta, por algunos minutos, el nivel de testosterona en la vena espermática.
- Pequeñas cantidades de testosterona introducida en el hipotálamo provoca atrofia testicular. En cambio, esta misma acción no produce efecto en la hipófisis.
2. Explica la función de las gonadotrofinas (FSH y LH), la testosterona y la inhibina en la espermatogénesis.
3. Relaciona los niveles de FSH, LH, estrógenos y progesterona en la fase folicular y luteinizante del ciclo menstrual.
4. ¿Por qué razón en los días de la menstruación o cercanos a ésta la mujer es infértil?
5. ¿Por qué razón en el día de la ovulación o cercanos a éste la mujer se considera fértil?

El ciclo menstrual

http://www.educarchile.cl/ech/pro/app/detalle?id=180304

sábado, 1 de octubre de 2016

Hormonas y Ciclo Menstrual

Las hormonas son sustancias químicas que controlan numerosas funciones corporales. Son producidas en el sistema endocrino, el cual está formado por glándulas y tejidos secretores que no tienen un conducto secretor como las glándulas exocrinas (por ejemplo, glándulas sudoríparas). Por lo tanto, sus secreciones u hormonas son secretadas y transportadas a través de la sangre. Las hormonas actúan como "mensajeros" para coordinar las funciones de varios órganos del cuerpo.
El sistema hormonal se relaciona principalmente con diversas acciones metabólicas del cuerpo humano y controla la intensidad de funciones químicas en las células. Algunos efectos hormonales se producen en segundos, otros requieren varios días para iniciarse incluso semanas, meses, o años.

Funciones que controlan las hormonas

Entre las funciones que controlan las hormonas se incluyen:

- Las actividades de órganos completos.
- El crecimiento y desarrollo.
- La reproducción.
- Las características sexuales.
- El uso y almacenamiento de energía.
- Los niveles en la sangre de líquidos, sal y azúcar.

Desde el punto de vista molecular existen diferentes tipos de hormonas, la mayoría derivada de los  esteroides y proteínas. La acción de cada hormona depende de los receptores que tengan las células. Estos receptores son específicos para una hormona determinada y se ubican en las células blanco (donde ejerce efecto la hormona). Los receptores de hormonas proteicas se ubican en la membrana plasmática de la célula blanco y los de hormonas esteroidales se encuentran en el citoplasma y núcleo celular.

Las hormonas sexuales son esteroidales y desempeñan un papel fundamental en el desarrollo sexual y del comportamiento. Debido a que estas moléculas esteroidales son pequeñas y solubles en las grasas, atraviesan fácilmente las membranas celulares. Una vez en el interior celular, los esteroides pueden unirse a receptores en el citoplasma o el núcleo y de esta manera influir sobre la expresión genética. Por lo tanto, las hormonas esteroidales ejercen acciones variadas y de larga duración sobre la función celular.

Las hormonas sexuales influyen de diferente manera en el desarrollo de la sexualidad desde la concepción hasta la madurez sexual, pues determinan el desarrollo de las características anatómicas, fisiológicas y de comportamiento que distinguen al hombre y a la mujer.

En esta sección estudiaremos específicamente el efecto de las hormonas sexuales en el ciclo menstrual y, en consecuencia, en el desarrollo de los óvulos. Para ello, comenzaremos dando una descripción de los eventos más importantes presentes en el ciclo menstrual y ovárico.

Regulación de hormonas sexuales femeninas

Desde la aparición de la primera menstruación (menarquia) hasta la desaparición de ella (menopausia), las mujeres experimentan cambios cíclicos en los ovarios y el útero.
Cada ciclo tiene una duración de unos 28 días aproximadamente e implica la maduración de un ovocito y la adecuación del endometrio para recibirlo, en el supuesto de que sea fecundado. Si no ocurre la fertilización, el endometrio uterino se desprende y deja unas áreas hemorrágicas que producen el sangrado menstrual. Podemos distinguir dos ciclos que se producen simultáneamente (fig. 1):

El ciclo ovárico, que consiste en la maduración de un folículo y expulsión de un ovocito secundario.
El ciclo menstrual, que consiste en la preparación de un ambiente apto para recibir al ovocito fecundado (cigoto). Si el ovocito secundario no está fertilizado es eliminado.

Ciclo ovárico

En el ovario ocurre una serie de eventos que llevan al desarrollo de los ovocitos secundarios. Las etapas fundamentales de estos cambios son:
- Fase folicular (crecimiento folicular): se refiere a la evolución del ovocito primario y el comportamiento de las células que lo acompañan (teca y granulosa), conjunto denominando folículo. Es una fase de duración variable que comienza con el desarrollo de un grupo de folículos por influencia de la hormona folículoestimulante (HFE) y la hormona luteinizante (HL). Estas hormonas reciben el nombre de gonadotrofinas por su acción sobre las gónadas femeninas y masculinas (ovarios y testículos). Luego, se selecciona un folículo que va madurando y aumentando de tamaño hasta el día de la ovulación y que secreta hormonas llamadas estrógenos. Éstos aceleran el crecimiento del endometrio y, además, son responsables de las características sexuales secundarias de la mujer.

- Ovulación: es el evento central del ciclo femenino y corresponde a la descarga del ovocito secundario del folículo maduro. Este hecho se produce por el brusco aumento de la hormona luteinizante hasta llegar a un máximo en su concentración (“peak” de HL), que es seguido en un lapso de horas por la ruptura de la pared folicular. En este evento se completa la primera división meiótica.

- Formación del cuerpo lúteo: tiene una duración constante de 14 ± 2 días. Después de la ovulación, la estructura folicular que queda en el ovario se reorganiza y se convierte en una estructura glandular conocida como cuerpo lúteo, que secreta progesterona y estrógenos. La  hormona progesterona es la encargada de preparar al útero para la eventual gestación. Si entre los 8 y 10 días después de la ovulación no aparece alguna señal de presencia embrionaria, el cuerpo lúteo inicia un proceso regresivo autónomo con caída en la producción de estrógeno y progesterona, lo que desencadena la menstruación.

Ciclo menstrual

El ciclo menstrual es la secuencia mensual de eventos que prepara al cuerpo para un posible embarazo. Comprende:

- Fase proliferativa: es el engrosamiento gradual del endometrio debido al aumento del nivel de estrógenos.
- Fase secretora: comienza con la ovulación. La progesterona modifica el endometrio, inhibiendo la fase proliferativa y preparándolo para aceptar, implantar y nutrir al posible embrión.
Figura 1.-Ciclo folicular y ciclo menstrual o endometrial y cambios hormonales asociados

El control de la reproducción en la mujer es muy complejo. En él participan el hipotálamo (estructura del sistema nervioso ubicada en el cerebro), la hipófisis (glándula endocrina ubicada en el cerebro) y los ovarios. La glándula hipófisis tiene una parte anterior (adenohipófisis) y otra posterior (neurohipófisis). Ambas son controladas por el hipotálamo, tal como se muestra en la figura 2. En esta figura también se incluyen hormonas que actúan durante el parto y en la secreción de leche durante la lactancia.

Figura 2. Eje hipotalámico-hipofisiario-gonadal: relación funcional y de control

Los cambios asociados al comienzo de la adolescencia femenina están relacionados con el desarrollo del eje hipotalámico–hipofisiario–ovárico (figura
2). Al comenzar la pubertad, el hipotálamo empieza a aumentar gradualmente la secreción de hormonas liberadores de gonadotrofinas (GnRH), las que estimulan al lóbulo anterior de la hipófisis para que secrete HFE y HL. Las hormonas generadas por la hipófisis actúan sobre los ovarios, los que liberan estrógenos y progesterona (hormonas sexuales femeninas), que causan el  crecimiento de los tejidos de los órganos sexuales femeninos y la aparición de los caracteres sexuales secundarios.

domingo, 25 de septiembre de 2016

Páncreas endócrino

Introducción

Los islotes de Langerhans del páncreas están formados por grupos celulares situados entre las masas glandulares exocrinas. Producen al menos cuatro tipos de secreciones endocrinas y están inervados por fibras simpáticas y parasimpáticas que regulan esta secreción. Las células alfa producen glucagón y constituyen entre un 20 y un 30% del total de células de los islotes. Las células beta, productoras de insulina, representan entre el 40 y el 60% de la masa celular. Las células delta producen somatostatina y, al igual que las células F productoras de polipéptido pancreático (PP), no son más del 5-15% del conjunto de células de los islotes. 

Insulina

La molécula de insulina está formada por dos cadenas polipeptídicas de 30 y 21 aminoácidos unidas por puentes disulfuro. Existen pequeñas variaciones entre las diferentes especies en cuanto a la estructura química pero las funciones son idénticas. La importancia de la insulina puede entenderse si se tiene en cuenta el hecho de que ha sido la causa de concesión de cuatro premios Nobel en 1923, 1958, 1964 y 1979. La síntesis de insulina en las células beta de los islotes pancreáticos ocurre en los ribosomas en forma de pre-pro-insulina. Al igual que en el caso de otras hormonas peptídicas, la molécula final activa es almacenada, tras sucesivos cambios en su recorrido a través del retículo endoplasmático, en los gránulos del aparato de Golgi, formando un complejo insoluble con el cinc.
Las funciones de la insulina son muy variadas. Aunque las más conocidas se relacionan con el metabolismo de los carbohidratos, no son de menor importancia las que ejerce sobre el metabolismo lipídico o el de las proteínas. En general, la insulina es una hormona que estimula los procesos anabólicos e inhibe los catabólicos. A corto plazo aumenta la oferta de sustratos en el interior celular para el almacenamiento de energía y a medio plazo provoca un incremento de las actividades enzimáticas relacionadas con la formación de reservas energéticas.
Sobre el metabolismo de los hidratos de carbono, la insulina aumenta el transporte de glucosa a través de la membrana plasmática de las células en la mayoría de los tejidos, excepto en el cerebro (excluyendo el centro de la saciedad hipotalámico), los túbulos renales, la mucosa intestinal, las propias células beta pancreáticas y los eritrocitos. En el hígado, la insulina estimula la síntesis de glucógeno inhibiendo la gluconeogénesis y la glucogenolisis. Es, por lo tanto, una hormona hipoglucemiante.

Glucagón

El glucagón está formado por una cadena polipéptidica de 29 aminoácidos carente de puentes disulfuro.
Se sintetiza, al igual que la insulina en forma de pre-pro-glucagón, en este caso en las células alfa de los islotes pancreáticos.
Las funciones del glucagón sobre el metabolismo de los carbohidratos son opuestas a las de la insulina.
Básicamente, el glucagón estimula la glucogenolisis en el hepatocito y la gluconeogénesis, siendo por tanto una hormona hiperglucemiante.

Somatostatina

Se sintetiza también en los islotes pancreáticos, en este caso en las células delta. Su principal función a este nivel consiste en reducir la velocidad de la digestión y de la absorción de nutrientes en el tubo digestivo, ralentizando su utilización para impedir cambios bruscos en el nivel de glucemia. Para ello, la somatostatina inhibe la motilidad gástrica, duodenal y de la vesícula biliar, reduce la secreción de clorhídrico, pepsina, gastrina, secretina y enzimas pancreáticas, e inhibe la absorción de glucosa y triglicéridos en la mucosa intestinal.

Polipéptido pancreático

El polipéptido pancreático (PP) se localiza en la periferia de los islotes, junto a las células productoras de glucagón y somatostatina, pero también hay PP en el tracto gastrointestinal, en íleon y colon y en el sistema nervioso central y periférico. Es un péptido de 36 aminoácidos cuya secreción se ve estimulada por la ingestión de proteínas y por la acción vagal. Su función más clara parece consistir en la inhibición de la secreción exocrina del páncreas. También inhibe la secreción biliar.

Regulación de la glucemia

En la regulación de la glucemia intervienen diversas hormonas, no sólo producidas en el páncreas, sino otras como la GH o los glucocorticoides, además del sistema nervioso vegetativo.
La compleja serie de interacciones que se establecen entre todos estos factores determinará finalmente, los niveles de glucosa en sangre, y es imprescindible que estos niveles no sufran excesivas oscilaciones ni se alejen de unos límites considerados como fisiológicos.


Esquema de la regulación de la concentración de la glucosa en la sangre


Cuando la concentración de la glucosa es baja en la sangre, el páncreas produce glucagón que estimula el desdoblamiento del glucógeno y la salida de glucosa en el hígado. Cuando la concentración de la glucosa sube, el páncreas secreta insulina que estimula la absorción de glucosa por las células y la conversión a glucógeno en el hígado. También es posible que frente a una situación de estrés se estimule la producción de ACTH que actúa sobre la corteza suprarrenal para producir cortisol y otros compuestos. Estas hormonas aceleran la degradación de proteínas y su conversión a glucosa en el hígado. La estimulación de la médula suprarrenal, por fibras del sistema nervioso autónomo simpático, produce adrenalina y noradrenalina que también aumenta la concentración de glucosa en la sangre.