viernes, 17 de marzo de 2017

Desarrollo de contenidos

Unidad 1: la respuesta al medio

Contenidos

Mecanismos de respuesta en el nivel organismo. Percepción: modelo de estímulo, procesamiento y respuesta. Diferentes tipos de estímulos y de receptores, relación entre las características del estímulo y del receptor. Diferentes tipos de respuestas: respuesta de huida. Respuestas instintivas versus aprendidas.
El papel de las señales en los comportamientos. La comunicación entre sistemas biológicos.
Mecanismos de respuesta en el nivel celular. Respuestas celulares al ambiente. La percepción a nivel celular. La membrana celular, receptores de membrana. Especificidad señal-receptor, modelo llave cerradura.
Comunicación entre células.

Unidad 2: regulación e integración de funciones

Contenidos

Sistema nervioso. Vías aferentes y eferentes. Sistema nervioso central y periférico. Órganos efectores: músculos y glándulas. Neuronas. Propagación del impulso nervioso. Sinapsis. Neurotransmisores.
Sistema nervioso voluntario y autónomo (simpático y parasimpático).                Sistema endócrino. Concepto de glándula, hormona y tejido blanco. Caso A: Rol de las hormonas en la homeostasis. Regulación de la glucemia: Insulina, glucagón y diabetes. Respuesta celular a la acción de la insulina. Caso B: rol de las hormonas en el desarrollo. Hormonas sexuales. La hipófisis como glándula integradora entre el sistema nervioso y endócrino.

Unidad 3: del ADN al organismo

Contenidos

Las proteínas como moléculas ejecutoras. Función biológica de las proteínas. Enzimas. Proteínas como polímeros con secuencia. Relación estructura y función en las proteínas.
El ADN como la molécula portadora de la información para construir las proteínas. El ADN como polímero con secuencia. Duplicación del ADN. Síntesis de proteínas. El gen como segmento de ADN que codifica una proteína. Mutaciones.

domingo, 6 de noviembre de 2016

El código genético

Tanto el ARN como el ADN están compuestos por la combinación de cuatro bases diferentes (se puede decir que es como un alfabeto de cuatro letras). ¿Cómo es esta combinación? Si cada aminoácido estuviera codificado sólo por dos bases habría un total de 42=16 posibilidades, pero esto no puede ser así, ya que los aminoácidos encontrados en las proteínas son 20. Necesitamos combinar más bases. Entonces, si combinamos tres bases (tripletes) para formar un aminoácido, obtenemos un total de 64 combinaciones (43=64)... pero ahora "sobran" 44 tripletes. En esa situación se encontraron Har Gobind Khorana y Marshall Nirenberg en la década de 1960.
Estos científicos demostraron que hay 61 tripletes -o codones- que codifican aminoácidos, muchos de los cuales son codificados por más de un codón, por lo que se dice que el código está degenerado. Los distintos aminoácidos son codificados por un número diferente de codones (algunos por 1, otros por 2, o por 3), e incluso existen tres tripletes que no codifican para ningún aminoácido. En resumen: de los 64 codones, 61 codifican aminoácidos y los tres restantes no son codificantes sino que son utilizados como señales de terminación.
Este código es casi universal: es el mismo en todos los organismos. Sin embargo, el código genético mitocondrial es diferente del nuclear y se transmite de manera independiente. De esto hablaremos en el siguiente título.

Cuadro. Código genético. Cada uno de los aminoácidos o señales de terminación está codificado por uno o más tripletes de ARN.

El genoma mitocondrial

En las células eucariotas la mayor parte de la información genética está contenida en el núcleo. Sin embargo, en estas células hay dos tipos de organelas que tienen su propio genoma. Estas organelas son las mitocondrias (centrales energéticas de la célula) y los cloroplastos (presentes solo en eucariotas fotosintéticos).

El genoma mitocondrial es una molécula de ADN circular que contiene 16.569 pares de bases y codifica 13 proteínas, 2 ARN ribosomal (ARNr) y 22 ARN de transferencia (ARNt). El código genético que utiliza es degenerado, es decir, ciertos codones en la mitocondria corresponden a aminoácidos diferentes de los utilizados por el genoma nuclear. Sin embargo, depende de muchas proteínas nucleares para poder replicarse y, a su vez, muchas proteínas presentes en las mitocondrias son codificadas por el genoma nuclear.

En mamíferos, cada mitocondria contiene entre 5 y 10 moléculas idénticas de ADN, cada una de aproximadamente 16.000 nucleótidos. Dado que una célula puede tener cientos de mitocondrias, el genoma mitocondrial representa casi el 1% del genoma total. Este genoma es de suma utilidad en el estudio de ciertas enfermedades hereditarias, debido a que las mitocondrias se heredan solamente por la línea materna (ya que las mitocondrias del espermatozoide no ingresan al óvulo). Todos los hermanos nacidos de una misma madre (sean varones o mujeres) pueden ser identificados como tales analizando ciertos marcadores mitocondriales. De hecho, estos marcadores deberían ser iguales entre los hermanos de la madre "los tíos", los primos hijos de hermanas mujeres de la madre, y así sucesivamente, siguiendo siempre la línea materna.

Estructura del ADN

En la década de los cincuenta, el campo de la biología fue convulsionado por el desarrollo del modelo de la estructura del ADN. James Watson y Francis Crick en 1953 demostraron que consiste en una doble hélice formada por dos cadenas.

El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:

1.- un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa),
2.- un grupo fosfato y
3.- una base nitrogenada
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denomina nucleósido.

Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.

Los extremos de cada una de las hebras del ADN son denominados 5'-P (fosfato) y 3'-OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5' 3' y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.

Estructura del ADN. El ácido desoxirribonucleico es un polímero de dos cadenas antiparalelas (orientación 5' 3' y 3' 5'). Cada cadena está compuesta por unidades de un azúcar (desoxirribosa), un fosfato y una base nitrogenada unidas entre si por enlaces fosfodiéster. Las bases presentes en el ADN son: adenina (A), timina (T), citosina (C) y guanina (G). Para recordar cómo aparean entre sí las bases podemos pensar en las iniciales de dos grandes personajes del tango: Aníbal Troilo (adenina es la base complementaria de timina) y Carlos Gardel (citosina es la complementaria a guanina).

sábado, 22 de octubre de 2016

¿Qué son las enzimas?

ENZIMAS

Función biológica de las proteínas

Así como los polisacáridos se reducen a ser sustancias de reserva o moléculas estructurales, las proteínas asumen funciones muy variadas gracias a su gran hetereogeneidad estructural. Describir las funciones de las proteínas equivale a describir en términos moleculares todos los fenómenos biológicos. Podemos destacar las siguientes:

función enzimática
función hormonal
función de reconocimiento de señales
función de transporte
función estructural
función de defensa
función de movimiento
función de reserva
transducción de señales
función reguladora


Muchas proteínas ejercen a la vez más de una de las funciones enumeradas: Las proteínas de membrana tienen tanto función estructural como enzimática; la ferritina es una proteína que transporta y, a la vez, almacena el hierro; la miosina interviene en la contracción muscular, pero también funciona como un enzima capaz de hidrolizar el ATP, y así se podrían poner muchos ejemplos más.
Función enzimática

La gran mayoría de las reacciones metabólicas tienen lugar gracias a la presencia de un catalizador de naturaleza proteica específico para cada reacción. Estos biocatalizadores reciben el nombre de enzimas. La gran mayoría de las proteínas son enzimas.


Función hormonal

Las hormonas son sustancias producidas por una célula y que una vez secretadas ejercen su acción sobre otras células dotadas de un receptor adecuado. Algunas hormonas son de naturaleza proteica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la hormona del crecimiento, o la calcitonina (que regula el metabolismo del calcio).
Estructura primaria de la insulina
Función de reconocimiento de señales

La superficie celular alberga un gran número de proteínas encargadas del reconocimiento de señales químicas de muy diverso tipo. Existen receptores hormonales, de neurotransmisores, de anticuerpos, de virus, de bacterias, etc. En muchos casos, los ligandos que reconoce el receptor (hormonas y neurotransmisores) son, a su vez, de naturaleza proteica.
Función de transporte

En los seres vivos son esenciales los fenómenos de transporte, bien para llevar una molécula hidrofóbica a través de un medio acuoso (transporte de oxígeno o lípidos a través de la sangre) o bien para transportar moléculas polares a través de barreras hidrofóbicas (transporte a través de la membrana plasmática). Los transportadores biológicos son siempre proteínas.
Función estructural

Las células poseen un citoesqueleto de naturaleza proteica que constituye un armazón alrededor del cual se organizan todos sus componentes, y que dirige fenómenos tan importantes como el transporte intracelular o la división celular. En los tejidos de sostén (conjuntivo, óseo, cartilaginoso) de los vertebrados, las fibras de colágeno forman parte importante de la matriz extracelular (de color claro en la Figura) y son las encargadas de conferir resistencia mecánica tanto a la tracción como a la compresión.


Función de defensa

La propiedad fundamental de los mecanismos de defensa es la de discriminar lo propio de lo extraño. En bacterias, una serie de proteínas llamadas endonucleasas de restricción se encargan de identificar y destruir aquellas moléculas de DNA que no identifica como propias (en la parte inferior de la figura de abajo).

Función de movimiento

Todas las funciones de motilidad de los seres vivos están relacionadas con las proteínas. Así, la contracción del músculo resulta de la interacción entre dos proteínas, la actina y la miosina.
Función de reserva

La ovoalbúmina de la clara de huevo, la lactoalbúmina de la leche, la gliadina del grano de trigo y la hordeína de la cebada, constituyen una reserva de aminoácidos para el futuro desarrollo del embrión.


Transducción de señales

Los fenómenos de transducción (cambio en la naturaleza físico-química de señales) están mediados por proteínas. Así, durante el proceso de la visión, la rodopsina de la retina convierte (o mejor dicho, transduce) un fotón luminoso (una señal física) en un impulso nervioso (una señal eléctrica), y un receptor hormonal convierte una señal química (una hormona) en una serie de modificaciones en el estado funcional de la célula.


Función reguladora

Muchas proteínas se unen al DNA y de esta forma controlan la transcripción génica. De esta forma el organismo se asegura de que la célula, en todo momento, tenga todas las proteínas necesarias para desempeñar normalmente sus funciones. Las distintas fases del ciclo celular son el resultado de un complejo mecanismo de regulación desempeñado por proteínas como la ciclina.

Relación estructura y función en las proteínas

Las proteínas son las macromoléculas más versátiles de cuantas existen en la materia viva: desempeñan un elevado número de funciones biológicas diferentes. Cada proteína está especializada en llevar a cabo una determinada función.
Entre las funciones de las proteínas cabe destacar las siguientes: catalíticas, estructurales, de transporte, nutrientes y de reserva, contráctiles o mótiles, de defensa, reguladoras del metabolismo, y otras muchas que determinadas proteínas desempeñan en organismos concretos.
La función de una proteína depende de la interacción de la misma con una molécula a la que llamamos ligando (en el caso particular de los enzimas el ligando recibe el nombre de sustrato). El ligando es específico de cada proteína. A su vez, la interacción entre proteína y ligando reside en un principio de complementariedad estructural: el ligando debe encajar en un hueco existente en la superficie de la proteína (el centro activo) tal y como lo haría una llave en una cerradura.

Sólo aquel o aquellos ligandos capaces de acoplarse en el centro activo de la proteína serán susceptibles de interactuar con ella.
Hay que tener en cuenta que este acoplamiento no es meramente espacial, sino que la proteína "ve" en su ligando, además de la forma, la distribución de cargas eléctricas, sus distintos grupos funcionales, y, en general, las posibilidades de establecer interacciones débiles con él a través de los grupos R de los aminoácidos que rodean el centro activo (el ligando "atraca" en el centro activo como lo haría un barco en un muelle, se establecen entre ambos "amarras" en forma de interacciones débiles que hacen más estable la asociación).

De lo anteriormente expuesto es fácil deducir que para que una proteína desempeñe su función biológica debe permanecer intacta su conformación tridimensional nativa. Si se pierde dicha conformación, y por lo tanto se altera la estructura del centro activo, ya no habrá acoplamiento entre proteína y ligando (no se "reconocerán") y la interacción entre ambos, de la que depende la función, ya no tendrá lugar. Como corolario de este razonamiento podemos afirmar que la función biológica de una proteína depende de su conformación tridimensional.
En resumen, la secuencia de aminoácidos de una proteína determina su conformación tridimensional, y ésta, a su vez, su función biológica.