sábado, 22 de octubre de 2016

¿Qué son las enzimas?

ENZIMAS

Función biológica de las proteínas

Así como los polisacáridos se reducen a ser sustancias de reserva o moléculas estructurales, las proteínas asumen funciones muy variadas gracias a su gran hetereogeneidad estructural. Describir las funciones de las proteínas equivale a describir en términos moleculares todos los fenómenos biológicos. Podemos destacar las siguientes:

función enzimática
función hormonal
función de reconocimiento de señales
función de transporte
función estructural
función de defensa
función de movimiento
función de reserva
transducción de señales
función reguladora


Muchas proteínas ejercen a la vez más de una de las funciones enumeradas: Las proteínas de membrana tienen tanto función estructural como enzimática; la ferritina es una proteína que transporta y, a la vez, almacena el hierro; la miosina interviene en la contracción muscular, pero también funciona como un enzima capaz de hidrolizar el ATP, y así se podrían poner muchos ejemplos más.
Función enzimática

La gran mayoría de las reacciones metabólicas tienen lugar gracias a la presencia de un catalizador de naturaleza proteica específico para cada reacción. Estos biocatalizadores reciben el nombre de enzimas. La gran mayoría de las proteínas son enzimas.


Función hormonal

Las hormonas son sustancias producidas por una célula y que una vez secretadas ejercen su acción sobre otras células dotadas de un receptor adecuado. Algunas hormonas son de naturaleza proteica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la hormona del crecimiento, o la calcitonina (que regula el metabolismo del calcio).
Estructura primaria de la insulina
Función de reconocimiento de señales

La superficie celular alberga un gran número de proteínas encargadas del reconocimiento de señales químicas de muy diverso tipo. Existen receptores hormonales, de neurotransmisores, de anticuerpos, de virus, de bacterias, etc. En muchos casos, los ligandos que reconoce el receptor (hormonas y neurotransmisores) son, a su vez, de naturaleza proteica.
Función de transporte

En los seres vivos son esenciales los fenómenos de transporte, bien para llevar una molécula hidrofóbica a través de un medio acuoso (transporte de oxígeno o lípidos a través de la sangre) o bien para transportar moléculas polares a través de barreras hidrofóbicas (transporte a través de la membrana plasmática). Los transportadores biológicos son siempre proteínas.
Función estructural

Las células poseen un citoesqueleto de naturaleza proteica que constituye un armazón alrededor del cual se organizan todos sus componentes, y que dirige fenómenos tan importantes como el transporte intracelular o la división celular. En los tejidos de sostén (conjuntivo, óseo, cartilaginoso) de los vertebrados, las fibras de colágeno forman parte importante de la matriz extracelular (de color claro en la Figura) y son las encargadas de conferir resistencia mecánica tanto a la tracción como a la compresión.


Función de defensa

La propiedad fundamental de los mecanismos de defensa es la de discriminar lo propio de lo extraño. En bacterias, una serie de proteínas llamadas endonucleasas de restricción se encargan de identificar y destruir aquellas moléculas de DNA que no identifica como propias (en la parte inferior de la figura de abajo).

Función de movimiento

Todas las funciones de motilidad de los seres vivos están relacionadas con las proteínas. Así, la contracción del músculo resulta de la interacción entre dos proteínas, la actina y la miosina.
Función de reserva

La ovoalbúmina de la clara de huevo, la lactoalbúmina de la leche, la gliadina del grano de trigo y la hordeína de la cebada, constituyen una reserva de aminoácidos para el futuro desarrollo del embrión.


Transducción de señales

Los fenómenos de transducción (cambio en la naturaleza físico-química de señales) están mediados por proteínas. Así, durante el proceso de la visión, la rodopsina de la retina convierte (o mejor dicho, transduce) un fotón luminoso (una señal física) en un impulso nervioso (una señal eléctrica), y un receptor hormonal convierte una señal química (una hormona) en una serie de modificaciones en el estado funcional de la célula.


Función reguladora

Muchas proteínas se unen al DNA y de esta forma controlan la transcripción génica. De esta forma el organismo se asegura de que la célula, en todo momento, tenga todas las proteínas necesarias para desempeñar normalmente sus funciones. Las distintas fases del ciclo celular son el resultado de un complejo mecanismo de regulación desempeñado por proteínas como la ciclina.

Relación estructura y función en las proteínas

Las proteínas son las macromoléculas más versátiles de cuantas existen en la materia viva: desempeñan un elevado número de funciones biológicas diferentes. Cada proteína está especializada en llevar a cabo una determinada función.
Entre las funciones de las proteínas cabe destacar las siguientes: catalíticas, estructurales, de transporte, nutrientes y de reserva, contráctiles o mótiles, de defensa, reguladoras del metabolismo, y otras muchas que determinadas proteínas desempeñan en organismos concretos.
La función de una proteína depende de la interacción de la misma con una molécula a la que llamamos ligando (en el caso particular de los enzimas el ligando recibe el nombre de sustrato). El ligando es específico de cada proteína. A su vez, la interacción entre proteína y ligando reside en un principio de complementariedad estructural: el ligando debe encajar en un hueco existente en la superficie de la proteína (el centro activo) tal y como lo haría una llave en una cerradura.

Sólo aquel o aquellos ligandos capaces de acoplarse en el centro activo de la proteína serán susceptibles de interactuar con ella.
Hay que tener en cuenta que este acoplamiento no es meramente espacial, sino que la proteína "ve" en su ligando, además de la forma, la distribución de cargas eléctricas, sus distintos grupos funcionales, y, en general, las posibilidades de establecer interacciones débiles con él a través de los grupos R de los aminoácidos que rodean el centro activo (el ligando "atraca" en el centro activo como lo haría un barco en un muelle, se establecen entre ambos "amarras" en forma de interacciones débiles que hacen más estable la asociación).

De lo anteriormente expuesto es fácil deducir que para que una proteína desempeñe su función biológica debe permanecer intacta su conformación tridimensional nativa. Si se pierde dicha conformación, y por lo tanto se altera la estructura del centro activo, ya no habrá acoplamiento entre proteína y ligando (no se "reconocerán") y la interacción entre ambos, de la que depende la función, ya no tendrá lugar. Como corolario de este razonamiento podemos afirmar que la función biológica de una proteína depende de su conformación tridimensional.
En resumen, la secuencia de aminoácidos de una proteína determina su conformación tridimensional, y ésta, a su vez, su función biológica.

Las proteínas como moléculas ejecutoras

Proteínas
Definición
Son polímeros lineales de L-aminoácidos unidos mediante enlace peptídico. Las proteínas son macromoléculas muy versátiles, que desempeñan tanto funciones estructurales como dinámicas.
Aminoácidos
Los aminoácidos son las moléculas unitarias, los monómeros de las proteínas. Todos los aminoácidos tienen una estructura común, que consiste en un átomo de carbono, el carbono alfa unido a un grupo carboxilo, un grupo amino y un átomo de Hidrógeno. La cuarta valencia del carbono alfa se completa con un grupo atómico de estructura variable, al que identificaremos como R (por Radical).

En el aminoácido de estructura más sencilla, la glicina, el R es un átomo de Hidrógeno. 
Exceptuando la glicina, en todos los demás aminoácidos el carbono alfa es un carbono asimétrico o quiral. Así se denomina a los átomos de carbono unidos a cuatro grupos atómicos diferentes. 
Las moléculas que, como los aminoácidos, tienen carbonos asimétricos, presentan isomería óptica. Es decir, por cada carbono asimétrico existen dos formas isoméricas, llamadas isómeros ópticos, que son imágenes especulares una de la otra. Los isómeros ópticos pertenecen a las series D o L. Los aminoácidos utilizados por los seres vivos son siempre de la serie L. Éstos se representan con el grupo amino ubicado a la izquierda.


En solución acuosa, los aminoácidos por lo general tienen carga eléctrica, ya que tanto el grupo amino como el carboxilo son ionizables. El grupo amino es básico y adquiere carga positiva cuando capta un protón. El grupo carboxilo, en tanto ácido, puede ceder un protón y adquirir carga negativa. Según la concentración de protones libres disponibles en el medio donde se encuentre (según el pH), el aminoácido será un catión, un anión, o un ión dipolar, si ambos grupos se ionizan simultáneamente.
Se dice que los aminoácidos son anfolitos o anfóteros, pues tienen la capacidad de comportarse como bases o como ácidos; esta capacidad los faculta para actuar como amortiguadores del pH.
El grupo R o Radical de los aminoácidos es diferente para cada uno de ellos. Existen 20 radicales diferentes; por lo tanto, 20 clases de aminoácidos distintos forman las proteínas.
Si bien los 20 aminoácidos son necesarios, hay 8 de ellos que la especie humana no puede sintetizar y debe adquirir con la alimentación; son los llamados aminoácidos esenciales.
Según la composición de sus radicales, los aminoácidos se clasifican en apolares, polares con densidad de carga y polares con tendencia a ionizarse, es decir, con tendencia a adquirir carga neta. Entre los últimos están los aminoácidos básicos y los ácidos, que son los que llevan otro grupo amino o carboxilo, respectivamente, en su radical.
Enlace peptídico
Es el enlace que establecen entre sí los aminoácidos. El enlace peptídico se produce al reaccionar el grupo amino de un aminoácido con el grupo carboxilo de otro aminoácido. Los aminoácidos así combinados se llaman restos o residuos de aminoácidos.
Al formarse la unión peptídica se desprende una molécula de agua. De manera que la reacción en la cual se enlazan los aminoácidos es una condensación. La inversa, en la cual el enlace peptídico se rompe y se obtienen aminoácidos libres, es una hidrólisis. 

Péptidos
Una cadena que contiene dos o más residuos de aminoácidos es un péptido. Hasta diez residuos se la llama oligopéptido y por encima de diez residuos, polipéptido. Una proteína es un polipéptido de alto peso molecular, pero el límite entre ambos es arbitrario y varía según los autores.
Los péptidos presentan dos extremos distintos: el N-terminal y el C-terminal. El N-terminal es el que tiene un residuo de aminoácido con grupo amino libre; este residuo es considerado el primero de la cadena. El extremo C-terminal es el que tiene un residuo de aminoácido con el grupo carboxilo libre; éste es considerado el último residuo de la cadena.

Niveles estructurales de las proteínas

Todas las proteínas son cadenas de alto peso molecular formadas por residuos de aminoácidos. ¿En qué se diferencia una proteína de otra? Las proteínas se diferencian, en primer lugar, por el número, tipo y orden de los aminoácidos que constituyen su cadena. La secuencia de aminoácidos que presenta una proteína particular se denomina estructura primaria

En algunas proteínas hay más de un residuo del aminoácido cisteína, que lleva un grupo sulfhidrilo en su radical. Dos residuos de cisteína pueden establecer una unión covalente entre los átomos de azufre, el puente disulfuro. La posición de los puentes disulfuro, cuando están presentes, forma parte de la estructura primaria.
Además de una secuencia particular de aminoácidos, las proteínas se pliegan sobre sí mismas, adoptando una estructura espacial determinada, o conformación nativa. Cada proteína adopta siempre la misma conformación nativa, si las condiciones del medio lo permiten. Esto indica que la forma de una proteína depende de su estructura primaria.
El primer nivel de plegamiento de una proteína es su estructura secundaria. La estructura secundaria puede ser regular, como la alfa hélice o la hoja plegada beta, o no seguir un patrón regular, en cuyo caso es de tipo aleatoria.
Las estructuras secundarias se originan porque se establecen uniones puentes de hidrógeno entre los restos amino y carboxilo de aminoácidos que están relativamente distantes en la estructura primaria, produciendo así un acercamiento entre ellos.
La estructura terciaria es la disposición global que adoptan en el espacio las distintas regiones de una proteína, después de haber adquirido su estructura secundaria. Esta disposición depende de interacciones que se establecen entre radicales, en general bastante alejados en la estructura primaria. Entre dichas interacciones se cuentan: uniones iónicas, puentes de hidrógeno, interacciones hidrofóbicas (todas ellas uniones no covalentes) y puentes disulfuro.
Algunas proteínas tienen estructura cuaternaria. Esta estructura se alcanza cuando la proteína está formada por dos o más cadenas polipeptídicas unidas entre sí por uniones no covalentes entre los radicales. A cada una de las cadenas que constituyen la proteína se le da el nombre de protómero o subunidad. Las proteínas de estructura cuaternaria también se conocen como proteínas oligoméricas.

Desnaturalización
La desnaturalización es la destrucción de la conformación nativa de una proteína, sin que se vea afectada su estructura primaria. La proteína conserva la cadena, pero no su estructura espacial. Cuando una proteína se desnaturaliza, la función biológica se pierde, ya que ésta se halla estrechamente ligada a la forma.
Dado que la conformación nativa de una proteína está sostenida por uniones relativamente débiles, muchos agentes son capaces de afectarla, por ejemplo: calor, radiaciones, congelamientos repetidos, grandes presiones, ácidos o bases muy concentrados que provocan marcados cambios de pH, algunos solventes orgánicos, etc.

Funciones de las proteínas
Las proteínas desempeñan infinidad de funciones: hormonal, de sostén, contráctil, de transporte, de defensa, regulación genética, recepción de señales, enzimática y muchas otras. También pueden ser oxidadas para la producción de energía (rinden 4 Kcal/g) aunque no se reservan con este fin.
Todos hemos oído hablar de la información genética y se sabe que esta información, guardada en las moléculas de ADN, es la responsable de las características de un organismo y de las diferencias entre una planta y un perro, o entre dos personas. Lo que no todos saben es que la información que guarda el ADN es la información para fabricar proteínas. No heredamos el color de pelo, o la estatura, heredamos recetas con las instrucciones para elaborar determinadas proteínas. Luego, las proteínas son las encargadas de dotar al organismo de su estructura, su función y sus características propias.

Enzimas

Las enzimas son proteínas de estructura terciaria o cuaternaria que cumplen la función de catalizadores biológicos, acelerando las reacciones químicas del metabolismo. Las enzimas hacen que la velocidad de las reacciones sea compatible con la vida. Sin enzimas, no existiría el metabolismo.
El mecanismo de acción de las enzimas ha sido explicado mediante el modelo de llave-cerradura. Cada enzima presenta un sitio (como un bolsillo en la estructura de la molécula) llamado sitio activo, donde encajan los sustratos de las reacciones químicas, tal como una llave encaja en su cerradura. La unión del sustrato al sitio activo facilita la formación del producto. Una vez formado, el producto se libera del sitio activo y la enzima se recupera sin cambios.
Este mecanismo de acción explica algunas propiedades de las enzimas: actúan a muy bajas concentraciones y son específicas.
Actúan a muy bajas concentraciones debido a que su estructura no resulta alterada al finalizar la reacción y, por lo tanto, la misma molécula de enzima puede catalizar sucesivas reacciones.
Son específicas: dado que la catálisis requiere el ingreso del sustrato al sitio activo, el sustrato y la enzima no solo deben tener afinidad química, sino también una forma complementaria. La misma enzima, en general, no admite sustratos distintos, como una cerradura no admite diferentes llaves.
Otra propiedad muy importante de las enzimas es que son regulables: ciertas sustancias pueden actuar como moduladores de la actividad enzimática, acrecentándola o disminuyéndola. También existen mecanismos como “interruptores” que pueden “encender” o “apagar” una enzima, controlando así el metabolismo por medio de su actividad.
Por último, se debe tener en cuenta que las enzimas son proteínas. Esto las hace pasibles de ser afectadas por distintos agentes desnaturalizantes. Una enzima desnaturalizada pierde su capacidad de catalizador, es decir, pierde su función específica.

Proteínas

El término proteína deriva del griego "proteos" (lo primero, lo principal) y habla de su gran importancia para los seres vivos. La importancia de las proteínas es, en un primer análisis, cuantitativa: constituyen el 50% del peso seco de la célula (15% del peso total) por lo que representan la categoría de biomoléculas más abundante después del agua.

Sin embargo su gran importancia biológica reside, más que en su abundancia en la materia viva, en el elevado número de funciones biológicas que desempeñan, en su gran versatilidad funcional y sobre todo en la particular relación que las une con los ácidos nucleicos, ya que constituyen el vehículo habitual de expresión de la información genética contenida en éstos últimos.

Composición de las proteínas

Desde el punto de vista de su composición elemental todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno, mientras que casi todas contienen además azufre (Cabe resaltar que en azúcares y lípidos el nitrógeno sólo aparece en algunos de ellos). Hay otros elementos que aparecen solamente en algunas proteínas (fósforo, cobre, zinc, hierro, etc.).
Las proteínas son biomoléculas de elevado peso molecular (macromoléculas) y presentan una estructura química compleja. Sin embargo, cuando se someten a hidrólisis ácida, se descomponen en una serie de compuestos orgánicos sencillos de bajo peso molecular: los α-aminoácidos. Este rasgo lo comparten las proteínas con otros tipos de macromoléculas: todas son polímeros complejos formados por la unión de unos pocos monómeros o sillares estructurales de bajo peso molecular. Existen 20 α-aminoácidos diferentes que forman parte de las proteínas.
En las moléculas proteicas los sucesivos restos aminoácidos se hallan unidos covalentemente entre sí formando largos polímeros no ramificados. El tipo de enlace que los une recibe el nombre de enlace peptídico. Las cadenas de aminoácidos de las proteínas no son polímeros al azar, de longitud indefinida, cada una de ellas posee una determinada composición química, un peso molecular y una secuencia ordenada de aminoácidos.

Clasificación de las proteínas

Las proteínas se clasifican en dos clases principales atendiendo a su composición. Las proteínas simples u holoproteínas son las que están compuestas exclusivamente por aminoácidos. Las proteínas conjugadas o heteroproteínas son las que están compuestas por aminoácidos y otra sustancia de naturaleza no proteica que recibe el nombre de grupo prostético. Las proteínas conjugadas pueden a su vez clasificarse en función de la naturaleza de su grupo prostético. Así, se habla de glucoproteínas, cuando el grupo prostético es un glúcido, lipoproteínas cuando es un lípido, metaloproteínas cuando es un ion metálico, fosfoproteínas cuando es un grupo fosfato, etc.
Otro criterio de clasificación de las proteínas es la forma tridimensional de su molécula. Las proteínas fibrosas son de forma alargada, generalmente son insolubles en agua y suelen tener una función estructural, mientras que las proteínas globulares forman arrollamientos compactos de forma globular y suelen tener funciones de naturaleza dinámica (catalíticas, de transporte, etc).