domingo, 25 de septiembre de 2016

Páncreas endócrino

Introducción

Los islotes de Langerhans del páncreas están formados por grupos celulares situados entre las masas glandulares exocrinas. Producen al menos cuatro tipos de secreciones endocrinas y están inervados por fibras simpáticas y parasimpáticas que regulan esta secreción. Las células alfa producen glucagón y constituyen entre un 20 y un 30% del total de células de los islotes. Las células beta, productoras de insulina, representan entre el 40 y el 60% de la masa celular. Las células delta producen somatostatina y, al igual que las células F productoras de polipéptido pancreático (PP), no son más del 5-15% del conjunto de células de los islotes. 

Insulina

La molécula de insulina está formada por dos cadenas polipeptídicas de 30 y 21 aminoácidos unidas por puentes disulfuro. Existen pequeñas variaciones entre las diferentes especies en cuanto a la estructura química pero las funciones son idénticas. La importancia de la insulina puede entenderse si se tiene en cuenta el hecho de que ha sido la causa de concesión de cuatro premios Nobel en 1923, 1958, 1964 y 1979. La síntesis de insulina en las células beta de los islotes pancreáticos ocurre en los ribosomas en forma de pre-pro-insulina. Al igual que en el caso de otras hormonas peptídicas, la molécula final activa es almacenada, tras sucesivos cambios en su recorrido a través del retículo endoplasmático, en los gránulos del aparato de Golgi, formando un complejo insoluble con el cinc.
Las funciones de la insulina son muy variadas. Aunque las más conocidas se relacionan con el metabolismo de los carbohidratos, no son de menor importancia las que ejerce sobre el metabolismo lipídico o el de las proteínas. En general, la insulina es una hormona que estimula los procesos anabólicos e inhibe los catabólicos. A corto plazo aumenta la oferta de sustratos en el interior celular para el almacenamiento de energía y a medio plazo provoca un incremento de las actividades enzimáticas relacionadas con la formación de reservas energéticas.
Sobre el metabolismo de los hidratos de carbono, la insulina aumenta el transporte de glucosa a través de la membrana plasmática de las células en la mayoría de los tejidos, excepto en el cerebro (excluyendo el centro de la saciedad hipotalámico), los túbulos renales, la mucosa intestinal, las propias células beta pancreáticas y los eritrocitos. En el hígado, la insulina estimula la síntesis de glucógeno inhibiendo la gluconeogénesis y la glucogenolisis. Es, por lo tanto, una hormona hipoglucemiante.

Glucagón

El glucagón está formado por una cadena polipéptidica de 29 aminoácidos carente de puentes disulfuro.
Se sintetiza, al igual que la insulina en forma de pre-pro-glucagón, en este caso en las células alfa de los islotes pancreáticos.
Las funciones del glucagón sobre el metabolismo de los carbohidratos son opuestas a las de la insulina.
Básicamente, el glucagón estimula la glucogenolisis en el hepatocito y la gluconeogénesis, siendo por tanto una hormona hiperglucemiante.

Somatostatina

Se sintetiza también en los islotes pancreáticos, en este caso en las células delta. Su principal función a este nivel consiste en reducir la velocidad de la digestión y de la absorción de nutrientes en el tubo digestivo, ralentizando su utilización para impedir cambios bruscos en el nivel de glucemia. Para ello, la somatostatina inhibe la motilidad gástrica, duodenal y de la vesícula biliar, reduce la secreción de clorhídrico, pepsina, gastrina, secretina y enzimas pancreáticas, e inhibe la absorción de glucosa y triglicéridos en la mucosa intestinal.

Polipéptido pancreático

El polipéptido pancreático (PP) se localiza en la periferia de los islotes, junto a las células productoras de glucagón y somatostatina, pero también hay PP en el tracto gastrointestinal, en íleon y colon y en el sistema nervioso central y periférico. Es un péptido de 36 aminoácidos cuya secreción se ve estimulada por la ingestión de proteínas y por la acción vagal. Su función más clara parece consistir en la inhibición de la secreción exocrina del páncreas. También inhibe la secreción biliar.

Regulación de la glucemia

En la regulación de la glucemia intervienen diversas hormonas, no sólo producidas en el páncreas, sino otras como la GH o los glucocorticoides, además del sistema nervioso vegetativo.
La compleja serie de interacciones que se establecen entre todos estos factores determinará finalmente, los niveles de glucosa en sangre, y es imprescindible que estos niveles no sufran excesivas oscilaciones ni se alejen de unos límites considerados como fisiológicos.


Esquema de la regulación de la concentración de la glucosa en la sangre


Cuando la concentración de la glucosa es baja en la sangre, el páncreas produce glucagón que estimula el desdoblamiento del glucógeno y la salida de glucosa en el hígado. Cuando la concentración de la glucosa sube, el páncreas secreta insulina que estimula la absorción de glucosa por las células y la conversión a glucógeno en el hígado. También es posible que frente a una situación de estrés se estimule la producción de ACTH que actúa sobre la corteza suprarrenal para producir cortisol y otros compuestos. Estas hormonas aceleran la degradación de proteínas y su conversión a glucosa en el hígado. La estimulación de la médula suprarrenal, por fibras del sistema nervioso autónomo simpático, produce adrenalina y noradrenalina que también aumenta la concentración de glucosa en la sangre.

Funciones reguladoras del eje hipotálamo-hipofisario

El hipotálamo y la hipófisis forman una unidad fisiológica de gran importancia en relación con la síntesis de hormonas peptídicas. Entre las funciones que coordina este eje se encuentran el crecimiento somático, la maduración de las gónadas, la adaptación de la corteza adrenal al estrés, la secreción de leche, la liberación de hormonas tiroideas y la excreción de agua en el riñón. Además, el eje hipotálamo-hipofisario también contribuye a la regulación de la presión sanguínea y a la regulación del gasto energético global del organismo.

Funciones hipotalámicas

Aunque clásicamente se había considerado a la hipófisis como la glándula maestra en el control endocrino del organismo, hoy día este papel se le atribuye principalmente al hipotálamo. Además de las funciones hipotalámicas ya mencionadas, relacionadas con la secreción de hormonas liberadoras o inhibidoras hacia la hipófisis, el hipotálamo es responsable del control de la temperatura corporal o de la regulación de la ingesta. Estas funciones las realiza gracias a las numerosas conexiones nerviosas que posee con centros superiores cerebrales y a su situación cercana a los canales de fluido cerebroespinal. Por este motivo, al hipotálamo se le considera como el principal intermediario entre el sistema nervioso central y el hormonal, es decir, como el transductor neuroendocrino por excelencia.

Secreciones hipotalámicas

En el hipotálamo se liberan neurotransmisores, como la adrenalina, noradrenalina, serotonina acetilcolina y diversos neuropéptidos, que permiten la comunicación entre las diferentes neuronas. De entre todas estas sustancias, algunas funcionan además como neuromoduladores, es decir, que no actúan directamente como transmisores del impulso eléctrico de una célula a otra, sino que lo modulan, estimulándolo o inhibiéndolo. Entre los neuromoduladores más conocidos encontramos a los opiáceos endógenos, por ejemplo las encefalinas. Finalmente, el hipotálamo también secreta neurohormonas mediante neuronas que se comportan como verdaderas células endocrinas. Los gránulos secretores que contienen estas hormonas viajan a lo largo del cuerpo celular y del axón y, o bien liberan su contenido a la circulación portal hipofisaria para que las hormonas ejerzan su función en la hipófisis anterior (hormonas liberadoras e inhibidoras hipotalámicas), o bien alcanzan la circulación sistémica a través de la neurohipófisis, como ocurre en el caso de la hormona antidiurética (ADHAVP) y de la oxitocina.

Hormonas hipotalámicas y de la neurohipófisis

TRH - hormona liberadora de tirotropina

La hormona liberadora de tirotropina tiene la estructura química más sencilla de todas las neurohormonas hipotalámicas. Consta de tres aminoácidos, ácido glutámico, histidina y prolina. Sin embargo, tiene un gran rango de funciones entre las que destacan la estimulación de la secreción de TSH y prolactina, su actuación como neurotransmisor/neuromodulador en el cerebro y médula espinal, su intervención en el control de la temperatura corporal y sus efectos diversos sobre el comportamiento. La liberación de TRH está regulada por centros superiores del encéfalo además de por retroalimentación negativa a través del eje hipotálamo-hipófisis- tiroides.

GnRH - hormona liberadora de gonadotropinas

La hormona liberadora de gonadotropinas es un péptido de 10 aminoácidos que estimula la síntesis y liberación de las dos gonadotropinas hipofisarias, la hormona estimuladora del folículo (FSH) y la hormona luteinizante (LH). Una de sus características más llamativas es el fenómeno de la secreción pulsátil, o en forma de brotes, a intervalos de tiempo que varían entre especies. En la GnRH este tipo de secreción es más evidente que en otras hormonas hipotalámicas, hasta el punto de que la administración continua de esta hormona suprime la liberación de gonadotropinas. La estrecha vinculación de esta hormona con la función reproductora implica que su regulación sea relativamente compleja y no se adapte al clásico esquema de retroalimentación negativa.
De hecho, la liberación de GnRH está relacionada con los niveles de estrógenos/progesterona durante el ciclo estral.

GHRH - hormona liberadora de la somatotropina o de la hormona del crecimiento

La hormona liberadora de la somatotropina o de la hormona del crecimiento presenta un gran número de formas que difieren entre sí en el número de aminoácidos que las componen, variando de 37 a 44. Su función, como su nombre indica, consiste en estimular la síntesis y liberación de la hormona del crecimiento (GH) y en su regulación por retroalimentación negativa intervienen las somatomedinas, hormonas que producen los tejidos expuestos a la GH. Además, el estrés, incluyendo el ejercicio físico, estimula su secreción, y la somatostatina la inhibe.

GHIH - somatostatina

La somatostatina no es en realidad una única hormona sino que el término incluye a una gran variedad de polipéptidos formados por cadenas de 14 a 28 aminoácidos. Entre sus funciones se incluye la inhibición de la liberación de GH, y de ahí las siglas GHIH. Es también inhibidora de la secreción de la hormona estimulante del tiroides (TSH). Está ampliamente distribuida por el sistema nervioso central y por otros tejidos, siendo muy importantes sus efectos inhibidores sobre la secreción de insulina y glucagón en el páncreas y sobre algunas funciones gastrointestinales como la secreción ácida en el estómago, la secreción de enzimas pancreáticos o la absorción intestinal.

CRH - hormona liberadora de corticotropina

La hormona liberadora de corticotropina es un péptido de 41 aminoácidos cuya principal función consiste en estimular la síntesis y secreción de ACTH en la hipófisis. La CRH está implicada en la respuesta del organismo a todas las formas de estrés y por lo tanto existen muchos factores relacionados con su regulación.
Entre éstos destaca el cortisol, el principal glucocorticoide liberado por la corteza adrenal, que inhibe la liberación de CRH por retroalimentación, mientras que la hormona antidiurética (ADH) ejerce un efecto estimulador.

PIH/PRF - hormona inhibidora de prolactina/ factor liberador de prolactina

El efecto del hipotálamo sobre la liberación de prolactina en la hipófisis es fundamentalmente inhibidor, y lo ejerce a través de la liberación de la hormona inhibidora de prolactina (PIH) que es el neurotransmisor aminérgico conocido como dopamina. Existe mucha controversia en cuanto a la existencia del factor liberador de prolactina (PRF) como una hormona con entidad propia, pero sí está claro que existen sustancias, entre ellas la TRH, que estimulan la liberación de PRL.

ADH/AVP - hormona antidiurética (ADH) o arginina-vasopresina

La hormona antidiurética (ADH) o arginina-vasopresina es un péptido sintetizado en las regiones supraóptica y paraventricular del hipotálamo. Una vez formada, la ADH llega a la neurohipófisis a través del tracto nervioso supraóptico transportada por la neurofisina II (un polipéptido hipotalámico) y se libera al torrente sanguíneo, separándose de su transportador. Su estructura varía entre las diferentes especies como refleja la figura 2-1. La función principal de la ADH está relacionada con la regulación del equilibrio hídrico del organismo así como de la osmolalidad. Por ello, cuando se detectan bajadas en la presión sanguínea, disminución de la volemia, hipoglucemia, etc. se activa un osmorreceptor en el hipotálamo que provoca la liberación de ADH. Por el contrario, cuando en el seno carotídeo o en la aurícula izquierda las estructuras especializadas correspondientes detectan una distensión por el aumento del volumen sanguíneo, las neuronas receptoras llevan impulsos al hipotálamo y se inhibe la liberación de ADH en la neurohipófisis. Otra importante función de la ADH se relaciona con su actividad vasoconstrictora, que se produce cuando la hormona se une a los receptores V1 del músculo liso de los vasos y a los V2 de las membranas plasmáticas de las células de los túbulos colectores renales.

Oxitocina

Las funciones de la oxitocina se ejercen fundamentalmente a nivel del útero y de la glándula mamaria. En el útero, la oxitocina se libera como consecuencia de los estímulos recogidos por los mecanorreceptores de este órgano y de la vagina y cérvix, estimulando las contracciones del miometrio durante el parto. Este reflejo se denomina reflejo neuroendocrino de Ferguson. El mecanismo de acción de la oxitocina en el útero implica la activación de canales de Ca2+ y la liberación de PGF2a. En la glándula mamaria, la succión de la cría estimula los mecanorreceptores de los pezones que generan un impulso nervioso aferente hasta hipotálamo provocando la liberación de oxitocina. Ésta actúa sobre las células mioepiteliales de los alvéolos contrayéndolas (reflejo neuroendocrino de succión). La adrenalina inhibe la acción de la oxitocina. La proteína transportadora de la oxitocina desde el hipotálamo a la hipófisis es la Neurofisina I.