sábado, 22 de agosto de 2015

Hipófisis: hormonas

Hormonas adenohipofisarias
Las seis hormonas adenohipofisarias que dependen de la regulación hipotalámica son:
  • GH. Hormona del crecimiento u hormona somatotropa, de 191 aminoácidos. Actúa sobre receptores periféricos y sus funciones son promover el crecimiento somático y modular el metabolismo intermediario.
  • PRL. Prolactina, de 199 aminoácidos. Su función corporal es promover la producción de leche por la glándula mamaria.
  • ACTH. Hormona corticotropa o adrenocorticotropina, de 39 aminoácidos, cuya función es estimular la corteza suprarrenal.
  • TSH. Hormona tiroestimulante, estimulante del tiroides o tirotropa, de 201 aminoácidos. Estimula la liberación de hormonas tiroideas y el trofismo de los folículos tiroideos.
  • LH. Hormona luteinizante o luteoestimulante, de 204 aminoácidos, estimula las células de Leydig en la gónada masculina y la función del cuerpo lúteo en la femenina.
  • FSH. Hormona folículo estimulante o estimulante del folículo, de 204 aminoácidos. Estimula el folículo de De Graaf en la gónada femenina y las células de Sertoli en la masculina.
Estudio de la hormona del crecimiento (GH)

La GH es la hormona mayoritaria de la adenohipófisis, siendo de naturaleza polipeptídica. La secreción de GH (1,4 mg/día en adultos) ocurre de manera fluctuante a lo largo del día, en descargas que duran 1-2 h, siendo una de las más características e importante la que ocurre durante el sueño profundo, siguiendo una ritmicidad circadiana.

1. Regulación de la secreción

•          Hipotálamo. GHRH (estimulante) y somatostatina (inhibidora) de la secreción de GH, siendo más potente la influencia de la primera que la de la segunda. La somatostatina posee una multiplicidad de acciones centrales y periféricas, como la inhibición de la secreción hipofisaria de TSH y la inhibición de la secreción pancreática de insulina y glucagón.
•          Estímulos que provocan liberación de GH. Consisten en una serie de estímulos de naturaleza estresante como la ansiedad, el dolor, el frío, la fiebre, también estímulos metabólicos como la hipoglucemia, la disminución de ácidos grasos libres, o el ejercicio físico y el sueño profundo.

2. Acciones fisiológicas de la GH

•          La GH actúa sobre diversos tejidos periféricos generando su acción biológica directamente o a través de un factor de crecimiento, el factor de crecimiento similar a la insulina (IGF-I), que es producido por el hígado tras la estimulación del mismo por la GH circulante.
•          Tanto la GH como su producto IGF-I cierran el circuito de regulación inhibiendo la secreción a nivel hipotalámico e hipofisario.
•          En las etapas iniciales de la vida se produce un incremento en la secreción de GH estimulando el crecimiento en niños y adolescentes. Durante la edad adulta desarrolla efectos metabólicos. Aunque se va produciendo una reducción progresiva de la misma, llegando a etapas de la vejez con una casi ausencia de secreción de GH y niveles bajos de IGF-I.

3. Acciones metabólicas directas

•          De forma muy resumida es una hormona anabólica, que estimula la síntesis proteica. Incrementa la captación de aminoácidos (sobre todo en hígado, músculo y tejido adiposo) y su incorporación a proteínas. Aumenta la síntesis de ADN y ARN, estimulando la división celular y permitiendo durante los periodos de crecimiento un aumento de la longitud de los huesos y de tamaño del resto del organismo.
•          En el metabolismo de los glúcidos, es una hormona ahorradora de glucosa y antiinsulinica. Aumenta los niveles plasmáticos de glucosa disminuyendo la captación por parte de las células y aumentando la glucogenolisis en el hígado. En cuanto al metabolismo lipídico, incrementa la lipólisis en el tejido adiposo y la liberación de ácidos grasos libres al plasma proporcionando así un sustrato energético no glucídico a las células.

4. Acciones sobre el crecimiento

•          La principal acción de la GH es promover el crecimiento somático, manteniendo los tejidos en su tamaño adulto y estimulando el crecimiento lineal durante la infancia y adolescencia.
•          Sobre los huesos provoca el crecimiento longitudinal actuando sobre el cartílago de crecimiento. La acción sobre éste es dual; por una parte, la GH inicia la replicación de los condrocitos, los cuales en su proceso madurativo segregan IGF-1 y, al mismo tiempo, desarrollan los receptores para este factor de crecimiento. El crecimiento óseo es por tanto una acción desencadenada por la GH, pero luego conducida por el binomio GH más IGF-1. En el tejido muscular la GH promueve la incorporación de aminoácidos y la síntesis proteica, siendo por tanto anabólica y trófica sobre el mismo. Por el contrario, en el tejido adiposo, la GH promueve la lipólisis liberando glicerol y AGL.

Estudio de la prolactina (PRL)

La PRL es la hormona que inicia y mantiene la lactación, producida por las células lactotropas de la adenohipófisis, con estructura molecular es muy similar a la de la GH y al igual que ella actúa sobre tejidos periféricos y no sobre otra glándula.

•          Regulación de la secreción. La PRL es la única hormona hipofisaria que se halla sometida a un control negativo por el hipotálamo a través de una amina, la dopamina, la cual inhibe la liberación de PRL. La administración intravenosa de TRH libera PRL y la hipoglucemia insulínica estimula su secreción por un efecto estimulante hipotalámico. Como todas las hormonas hipofisarias, la secreción de PRL se produce en brotes o pulsos a lo largo del día y, de forma más acusada, por la noche, pero, a diferencia de la GH, la hipersecreción nocturna ocurre al comienzo de la noche y no se relaciona con etapas específicas del sueño. Otro factor que estimula la secreción de PRL es el estrés inespecífico, los estrógenos y la lactación.
•          Acciones. Las acciones fisiológicas de la PRL sólo se consideran importantes en la mujer gestante o lactante. La PRL, durante el embarazo, prepara la lactación y, tras el parto, en una mama preparada por dosis adecuadas de estrógenos y progesterona, estimula la síntesis de proteínas específicas de la leche. Tras el parto y durante el amamantamiento, el estímulo de succión sobre el pezón produce una señal nerviosa que es transmitida por vía espinal hasta el hipotálamo, donde provoca una inhibición de la secreción de dopamina y la subsiguiente descarga de PRL para estimular la síntesis de las proteínas de la leche. Este estímulo provoca también una descarga de oxitocina que contrae los folículos mamarios para su eyección. Cuando la madre deja de amamantar, la ausencia de estímulo en el pezón provoca, en aproximadamente una semana, la pérdida de secreción de PRL, tras lo cual todo el sistema vuelve a la situación previa al parto.

Hormonas neurohipofisarias

Las neuronas de los núcleos hipotalámicos supraóptico y paraventricular sintetizan dos péptidos de pequeño tamaño que son respectivamente la vasopresina o ADH y la oxitocina.

Oxitocina

El principal estímulo para la secreción de esta hormona es la succión del pezón, los mecanorreceptores envían información sensorial que alcanza a las neuronas del núcleo paraventricular provocando la liberación de la hormona en las terminales axónicas localizadas en la neurohipófisis. Su unión al receptor es estimulada por los estrógenos.

Acciones hormonales:

  • Estimula la contracción de las células mioepiteliales.
  • Estimula la contracción del miometrio.
  • Facilita el olvido de patrones de conducta.
  • Estimula la secreción de prolactina.
  • Estimula la secreción de ACTH.
  • Disminuye la síntesis de testosterona.
  • Controla la contractilidad de las fibras musculares del tracto genital masculino.
Vasopresina o ADH

Péptido de nueve aminoácidos muy similar al anterior, sintetizado por las neuronas del núcleo supraóptico, siendo el principal estímulo para su secreción la disminución de volumen de los líquidos extracelulares o el aumento de la presión coloidosmótica del plasma.

Acciones hormonales:

  • Vasoconstricción
  • Redistribución del volumen sanguíneo
  • Estimula la reabsorción de agua en los túbulos renales
  • Estimula la secreción de ACTH.
  • Activación de procesos de aprendizaje y memoria
Resumiendo:

La hipófisis como glándula integradora entre el sistema nervioso y endócrino

Funciones reguladoras del eje hipotálamo-hipofisario

El hipotálamo y la hipófisis forman una unidad fisiológica de gran importancia en relación con la síntesis de hormonas peptídicas. Entre las funciones que coordina este eje se encuentran el crecimiento somático, la maduración de las gónadas, la adaptación de la corteza adrenal al estrés, la secreción de leche, la liberación de hormonas tiroideas y la excreción de agua en el riñón. Además, el eje hipotálamo-hipofisario también contribuye a la regulación de la presión sanguínea y a la regulación del gasto energético global del organismo.

Funciones hipotalámicas

Aunque clásicamente se había considerado a la hipófisis como la glándula maestra en el control endocrino del organismo, hoy día este papel se le atribuye principalmente al hipotálamo. Además de las funciones hipotalámicas ya mencionadas, relacionadas con la secreción de hormonas liberadoras o inhibidoras hacia la hipófisis, el hipotálamo es responsable del control de la temperatura corporal o de la regulación de la ingesta. Estas funciones las realiza gracias a las numerosas conexiones nerviosas que posee con centros superiores cerebrales y a su situación cercana a los canales de fluido cerebroespinal. Por este motivo, al hipotálamo se le considera como el principal intermediario entre el sistema nervioso central y el hormonal, es decir, como el transductor neuroendocrino por excelencia.

Secreciones hipotalámicas

En el hipotálamo se liberan neurotransmisores, como la adrenalina, noradrenalina, serotonina acetilcolina y diversos neuropéptidos, que permiten la comunicación entre las diferentes neuronas. De entre todas estas sustancias, algunas funcionan además como neuromoduladores, es decir, que no actúan directamente como transmisores del impulso eléctrico de una célula a otra, sino que lo modulan, estimulándolo o inhibiéndolo. Entre los neuromoduladores más conocidos encontramos a los opiáceos endógenos, por ejemplo las encefalinas. Finalmente, el hipotálamo también secreta neurohormonas mediante neuronas que se comportan como verdaderas células endocrinas. Los gránulos secretores que contienen estas hormonas viajan a lo largo del cuerpo celular y del axón y, o bien liberan su contenido a la circulación portal hipofisaria para que las hormonas ejerzan su función en la hipófisis anterior (hormonas liberadoras e inhibidoras hipotalámicas), o bien alcanzan la circulación sistémica a través de la neurohipófisis, como ocurre en el caso de la hormona antidiurética (ADHAVP) y de la oxitocina.

Hormonas hipotalámicas y de la neurohipófisis


TRH - hormona liberadora de tirotropina

La hormona liberadora de tirotropina tiene la estructura química más sencilla de todas las neurohormonas hipotalámicas. Consta de tres aminoácidos, ácido glutámico, histidina y prolina. Sin embargo, tiene un gran rango de funciones entre las que destacan la estimulación de la secreción de TSH y prolactina, su actuación como neurotransmisor/neuromodulador en el cerebro y médula espinal, su intervención en el control de la temperatura corporal y sus efectos diversos sobre el comportamiento. La liberación de TRH está regulada por centros superiores del encéfalo además de por retroalimentación negativa a través del eje hipotálamo-hipófisis- tiroides.

GnRH - hormona liberadora de gonadotropinas

La hormona liberadora de gonadotropinas es un péptido de 10 aminoácidos que estimula la síntesis y liberación de las dos gonadotropinas hipofisarias, la hormona estimuladora del folículo (FSH) y la hormona luteinizante (LH). Una de sus características más llamativas es el fenómeno de la secreción pulsátil, o en forma de brotes, a intervalos de tiempo que varían entre especies. En la GnRH este tipo de secreción es más evidente que en otras hormonas hipotalámicas, hasta el punto de que la administración continua de esta hormona suprime la liberación de gonadotropinas. La estrecha vinculación de esta hormona con la función reproductora implica que su regulación sea relativamente compleja y no se adapte al clásico esquema de retroalimentación negativa.
De hecho, la liberación de GnRH está relacionada con los niveles de estrógenos/progesterona durante el ciclo estral.

GHRH - hormona liberadora de la somatotropina o de la hormona del crecimiento

La hormona liberadora de la somatotropina o de la hormona del crecimiento presenta un gran número de formas que difieren entre sí en el número de aminoácidos que las componen, variando de 37 a 44. Su función, como su nombre indica, consiste en estimular la síntesis y liberación de la hormona del crecimiento (GH) y en su regulación por retroalimentación negativa intervienen las somatomedinas, hormonas que producen los tejidos expuestos a la GH. Además, el estrés, incluyendo el ejercicio físico, estimula su secreción, y la somatostatina la inhibe.

GHIH - somatostatina

La somatostatina no es en realidad una única hormona sino que el término incluye a una gran variedad de polipéptidos formados por cadenas de 14 a 28 aminoácidos. Entre sus funciones se incluye la inhibición de la liberación de GH, y de ahí las siglas GHIH. Es también inhibidora de la secreción de la hormona estimulante del tiroides (TSH). Está ampliamente distribuida por el sistema nervioso central y por otros tejidos, siendo muy importantes sus efectos inhibidores sobre la secreción de insulina y glucagón en el páncreas y sobre algunas funciones gastrointestinales como la secreción ácida en el estómago, la secreción de enzimas pancreáticos o la absorción intestinal.

CRH - hormona liberadora de corticotropina

La hormona liberadora de corticotropina es un péptido de 41 aminoácidos cuya principal función consiste en estimular la síntesis y secreción de ACTH en la hipófisis. La CRH está implicada en la respuesta del organismo a todas las formas de estrés y por lo tanto existen muchos factores relacionados con su regulación.
Entre éstos destaca el cortisol, el principal glucocorticoide liberado por la corteza adrenal, que inhibe la liberación de CRH por retroalimentación, mientras que la hormona antidiurética (ADH) ejerce un efecto estimulador.

PIH/PRF - hormona inhibidora de prolactina/ factor liberador de prolactina

El efecto del hipotálamo sobre la liberación de prolactina en la hipófisis es fundamentalmente inhibidor, y lo ejerce a través de la liberación de la hormona inhibidora de prolactina (PIH) que es el neurotransmisor aminérgico conocido como dopamina. Existe mucha controversia en cuanto a la existencia del factor liberador de prolactina (PRF) como una hormona con entidad propia, pero sí está claro que existen sustancias, entre ellas la TRH, que estimulan la liberación de PRL.

ADH/AVP - hormona antidiurética (ADH) o arginina-vasopresina

La hormona antidiurética (ADH) o arginina-vasopresina es un péptido sintetizado en las regiones supraóptica y paraventricular del hipotálamo. Una vez formada, la ADH llega a la neurohipófisis a través del tracto nervioso supraóptico transportada por la neurofisina II (un polipéptido hipotalámico) y se libera al torrente sanguíneo, separándose de su transportador. Su estructura varía entre las diferentes especies como refleja la figura 2-1. La función principal de la ADH está relacionada con la regulación del equilibrio hídrico del organismo así como de la osmolalidad. Por ello, cuando se detectan bajadas en la presión sanguínea, disminución de la volemia, hipoglucemia, etc. se activa un osmorreceptor en el hipotálamo que provoca la liberación de ADH. Por el contrario, cuando en el seno carotídeo o en la aurícula izquierda las estructuras especializadas correspondientes detectan una distensión por el aumento del volumen sanguíneo, las neuronas receptoras llevan impulsos al hipotálamo y se inhibe la liberación de ADH en la neurohipófisis. Otra importante función de la ADH se relaciona con su actividad vasoconstrictora, que se produce cuando la hormona se une a los receptores V1 del músculo liso de los vasos y a los V2 de las membranas plasmáticas de las células de los túbulos colectores renales.

Oxitocina

Las funciones de la oxitocina se ejercen fundamentalmente a nivel del útero y de la glándula mamaria. En el útero, la oxitocina se libera como consecuencia de los estímulos recogidos por los mecanorreceptores de este órgano y de la vagina y cérvix, estimulando las contracciones del miometrio durante el parto. Este reflejo se denomina reflejo neuroendocrino de Ferguson. El mecanismo de acción de la oxitocina en el útero implica la activación de canales de Ca2+ y la liberación de PGF2a. En la glándula mamaria, la succión de la cría estimula los mecanorreceptores de los pezones que generan un impulso nervioso aferente hasta hipotálamo provocando la liberación de oxitocina. Ésta actúa sobre las células mioepiteliales de los alvéolos contrayéndolas (reflejo neuroendocrino de succión). La adrenalina inhibe la acción de la oxitocina. La proteína transportadora de la oxitocina desde el hipotálamo a la hipófisis es la Neurofisina I