domingo, 23 de noviembre de 2014

Mutaciones

Hoy día se define a las mutaciones como cualquier cambio heredable del genoma. Los cambios pueden ser a diferentes niveles:
1. A nivel de genes: mutaciones génicas o puntuales. 
2. A nivel de cromosomas: cambio en un segmento de un cromosoma, un cromosoma entero o inclusive un set completo de cromosomas.

Causas: 

1.  Espontáneas: errores de la ADN polimerasa durante la replicación del ADN 
2. Inducidas por agentes mutagénicos: estos agentes reaccionan con el ADN causando un cambio estructural que afecta una de las hebras de la doble hélice, causando un cambio estructural que afecta el apareamiento de bases resultado de un nucleótido alterado. Usualmente afecta a 1 de las dos hebras del ADN.


Mutaciones somáticas o germinales?

Somática: Si la mutación ocurre en una célula que desarrolla un tejido somático, dará origen a una población de células mutantes idénticas. Las células idénticas  de una población originada por mitosis a partir de una sola célula progenitora se denominan clones. 
Si la mutación es dominante se expresará en el fenotipo de aquellos organismos diploides. Si es recesiva no se expresará ya que quedará enmascarada por el alelo salvaje (dominante), una segunda mutación puede crear una mutación homocigota recesiva, pero es un evento raro.
¿Son heredables?: por definición no se heredan, ya que las células somáticas son aquellas que no origina progenie. Sin embargo hay que recordar que porciones de plantas (con mutaciones somáticas) pueden originar nuevos individuos con su eventual línea germinal. 
Consecuencias en un organismo multicelular: un ejemplo de mutaciones somáticas son las células que origina el cáncer. cuando ciertos genes (proto-oncogenes)  sufren una mutación las células inician una secuencia descontrolada de divisiones celulares resultando en una masa de células denominada tumor.
Mutación de la línea marginal: si la mutación se produce en una de las células sexuales inevitablemente pasará a la descendencia (en tanto ésta participe de la fecundación). Un fenotipo completamente normal puede tener células mutantes en su línea germinal y solo se detectará en su descendencia.
Casos especiales: recuerde que algunas mutaciones pueden afectar al cromosoma X y este se encuentra inactivado al azar en las hembras de mamíferos, por lo que pueden no expresar el fenotipo. Ej: hemofilia ligada al cromosoma X.
Mutaciones moleculares o génicas: son cambios que se producen en la secuencia de bases del ADN, que, por lo general, tienen lugar durante su replicación o autoduplicación.
Mutaciones cromosómicas: la alteración se produce en una parte del cromosoma, es decir que afecta a un grupo de genes, pueden ser deleciones, translocaciones o inversiones.
a) Las deleciones implican la pérdida de material de un solo cromosoma. Los efectos son típicamente graves, puesto que hay pérdida de material genético.

b) Las inversiones tienen lugar cuando se dan dos cortes dentro de un mismo cromosoma y el segmento intermedio gira 180° (se invierte) y se vuelve a unir, formando un cromosoma que estructuralmente tiene la secuencia cambiada. Normalmente no hay riesgo de problemas para el individuo si la inversión es de origen familiar (es decir, se ha heredado de uno de los progenitores). Hay un riesgo algo mayor si es una mutación de novo (nueva), debido posiblemente a la interrupción de una secuencia clave de un gen. Aunque el portador de una inversión puede ser completamente normal, tiene un riesgo ligeramente mayor de producir un embrión con un desequilibrio cromosómico. Esto se debe a que un cromosoma invertido tiene dificultad en emparejarse con su homólogo normal durante la meiosis, lo que puede producir gametos que contengan derivados cromosómicos desequilibrados si ocurre un entrecruzamiento desigual.

3) Las translocaciones implican el intercambio de material entre dos o más cromosomas. Si una translocación es recíproca (equilibrada) el riesgo de problemas para el individuo es similar al de las inversiones: normalmente nulo si es familiar y ligeramente mayor si es de novo. Surgen problemas con las translocaciones cuando a partir de un progenitor equilibrado se forman gametos que no contienen ambos productos de la translocación. Cuando tal gameto se combina con un gameto normal del otro progenitor, el resultado es un embrión desequilibrado que es parcialmente monosómico para un cromosoma y parcialmente trisómico para el otro.

jueves, 13 de noviembre de 2014

Composición química del ADN y su duplicación. Síntesis de proteínas

El ácido desoxirribonucleico (ADN) es un polímero de alto peso molecular formado por dos cadenas o hebras de monómeros llamados nucleótidos. Cada nucleótido está conformado por moléculas más pequeñas: una base nitrogenada (adenina, guanina, citosina o timina), un hidrato de carbono (desoxirribosa) y un grupo fosfato (fig. 1). Los cuatro tipos de nucleótidos difieren solamente en el tipo de base nitrogenada, las cuales pueden ser púricas (adenina o guanina) o pirimídicas (citosina o timina). Se les llama púricas o pirimídicas porque derivan de moléculas llamadas purina o pirimidina.

Fig. 1: Esquema de un nucleótido
El conocimiento de los componentes del ADN y otros antecedentes permitió a los científicos Watson y Crick construir un modelo tridimensional de la molécula. Este modelo propone la presencia de dos cadenas de nucleótidos entrelazadas en forma de doble hélice. Cada una de estas hebras se une a la otra por las bases nitrogenadas mediante puentes de hidrógeno, siguiendo un patrón fijo: la adenina se une a la timina y la guanina a la citosina. Los nucleótidos de cada cadena se unen a través de los grupos fosfato y la desoxirribosa (fig. 2).
Figura 2. a. Modelo de la doble hélice del ADN; b. Disposición de los nucleótidos en el ADN
El modelo descrito permite explicar cómo se pueden sintetizar nuevas moléculas de ADN: el proceso comienza con la ruptura de los enlaces de hidrógeno y la consecuente separación las dos cadenas complementarias. Esto permite que cada una de las cadenas sirva de molde para formar una cadena complementaria nueva. En este proceso participa una serie de enzimas, una de ellas es la ADN polimerasa, que permite el enlazamiento de los nucleótidos en las cadenas complementarias nuevas. Este modelo de duplicación del ADN (replicación o autoduplicación) se denomina semiconservativo, ya que cada ADN sintetizado está formado por una cadena “antigua”, que sirvió de molde, con la otra “nueva”.
El ADN es capaz de determinar el fenotipo de un organismo a través de un proceso denominado expresión génica. Mediante dicho proceso la información contenida en los genes del ADN es utilizada para especificar la constitución de las proteínas de la célula. Recordemos que un gen tiene información específica para la síntesis de una proteína determinada. Las proteínas que se sintetizan influyen en el fenotipo, desde rasgos visibles hasta otros sólo observables bioquímicamente como es el caso de las enzimas y las proteínas estructurales.
El ADN es una macromolécula, que por su gran tamaño, está imposibilitado para atravesar la membrana nuclear para llegar hasta los ribosomas, lugar de síntesis de proteína. Por esto, se requiere la participación de otro ácido nucleico, el ácido ribonucleico (ARN), el cual, sí puede salir por los poros de la membrana nuclear hacia los ribosomas.”
Para que se sintetice una proteína se requieren los siguientes eventos (fig. 3):
Figura 3. Esquema del proceso de síntesis de proteína
1. Transcripción: la información contenida en un gen del ADN se copia en un ARN mensajero (ARNm) con la participación de la enzima ARN polimerasa. De esta manera, es el ARNm el que lleva la información codificada en cuanto al tipo, cantidad y orden de los aminoácidos que formarán la futura proteína. Una vez que el ARNm ha copiado toda información desde el ADN sale del núcleo hacia los ribosomas ubicados en el citoplasma celular (fig. 4). Notemos que el gen se copia de cada hebra de ADN separados (hebra templado del gen 1 y hebra templado del gen 2).
Figura 4. Esquema de la transcripción
2. Traducción: la información transcrita en el ARNm se utiliza para determinar la secuencia (orden) de aminoácidos de una proteína. Una secuencia de tres bases nitrogenadas consecutivas o triplete del ARNm se llama codón. Éste lleva información, que se traduce en los ribosomas, para un aminoácido específico que formará parte de la proteína. Los ribosomas se unen al ARNm y lo recorren “traduciendo” la información de sus codones. Aquí entra en juego otro tipo de ARN denominado ARN de transferencia (ARNt), que se encarga de transportar un aminoácido determinado hasta los ribosomas. Un sector de este ARNt tiene un triplete llamado anticodón que es complentario con el codón del ARNm; si ambos coinciden, el ARNt deja el aminoácido en el ribosoma. Así sucesivamente van llegando otros aminoácidos que al unirse formarán una proteína (fig. 5).
Figura 5. Esquema de la traducción

Duplicación del ADN

El proceso de replicación de ADN es el mecanismo que permite al ADN duplicarse (es decir, sintetizar una copia idéntica). De esta manera de una molécula de ADN única, se obtienen dos o más "clones" de la primera. Esta duplicación del material genético se produce de acuerdo con un mecanismo semiconservativo, lo que indica que las dos cadenas complementarias del ADN original, al separarse, sirven de molde cada una para la síntesis de una nueva cadena complementaria de la cadena molde, de forma que cada nueva doble hélice contiene una de las cadenas del ADN original. Gracias a la complementación entre las bases que forman la secuencia de cada una de las cadenas, el ADN tiene la importante propiedad de reproducirse idénticamente, lo que permite que la información genética se transmita de una célula madre a las células hijas y es la base de la herencia del material genético. La molécula de ADN se abre como una cremallera por ruptura de los puentes de hidrógeno entre las bases complementarias puntos determinados: los orígenes de replicación. Las proteínas iniciadoras reconocen secuencias de nucleótidos específicas en esos puntos y facilitan la fijación de otras proteínas que permitirán la separación de las dos hebras de ADN formándose una horquilla de replicación. Un gran número de enzimas y proteínas intervienen en el mecanismo molecular de la replicación, formando el llamado complejo de replicación o replisoma. Estas proteínas y enzimas son homólogas en eucariotas y arqueas, pero difieren en bacterias.

El ADN como polímero con secuencia

El ADN es el Ácido DesoxirriboNucleico. Es el tipo de molécula más compleja que se conoce. Su secuencia de nucleótidos contiene la información necesaria para poder controlar el metabolismo un ser vivo. El ADN es el lugar donde reside la información genética de un ser vivo.
El estudio de su estructura se puede hacer a varios niveles, apareciendo estructuras, primaria, secundaria, terciaria, cuaternaria y niveles de empaquetamiento superiores.

Estructura primaria

El ADN está compuesto por una secuencia de nucleótidos formados por desoxirribosa. Las bases nitrogenadas que se hallan formando los nucleótidos de ADN son Adenina, Guanina, Citosina y Timina. No aparece Uracilo. Los nucleótidos se unen entre sí mediante el grupo fosfato del segundo nucleótido, que sirve de puente de unión entre el carbono 5' del primer nucleótido y el carbono 3' de siguiente nucleótido.

Como el primer nucleótido tiene libre el carbono 5' y el siguiente nucleótido tiene libre el carbono 3', se dice que la secuencia de nucleótidos se ordena desde 5' a 3' (5' 3').


Estructura secundaria

La estructura secundaria del ADN fue propuesta por James Watson y Francis Crick, y la llamaron el modelo de doble hélice de ADN. 
           
Este modelo está formado por dos hebras de nucleótidos. Estas dos hebras se sitúan de forma antiparalela, es decir, una orientada en sentido 5' 3' y la otra de 3' 5'. Las dos están paralelas, formando puentes de Hidrógeno entre las bases nitrogenadas enfrentadas.

Cuando en una hebra encontramos Adenina, en la otra hebra hallamos Timina. Cuando en una hebra encontramos Guanina, en la otra hallamos Citosina. Estas bases enfrentadas son las que constituyen los puentes de Hidrógeno. Adenina forma dos puentes de Hidrógeno con Timina. Guanina forma tres puentes de Hidrógeno con la Citosina.

Las dos hebras están enrolladas en torno a un eje imaginario, que gira en contra del sentido de las agujas de un reloj. Las vueltas de estas hélices se estabilizan mediante puentes de Hidrógeno.

Esta estructura permite que las hebras que se formen por duplicación de ADN sean copia complementaria de cada una de las hebras existentes.

Estructura terciaria

El ADN es una molécula muy larga en algunas especies y, sin embargo, en las células eucariotas se encuentra alojado dentro del minúsculo núcleo. Cuando el ADN se une a proteínas básicas, la estructura se compacta mucho.

Las proteínas básicas son Histonas o Protaminas.


La unión con Histonas genera la estructura denominada nucleosoma. Cada nucleosoma está compuesto por una estructura voluminosa, denominada core, seguida por un eslabón o "Linker". El core está compuesto por un octámero de proteínas, Histonas, denominadas H2A, H2B, H3 y H4. Cada tipo de histona se presenta en número par. Esta estructura está rodeada por un tramo de ADN que da una vuelta y 3/4 en torno al octámero. El Linker está formado por un tramo de ADN que une un nucleosoma con otro y una histona H1.

El conjunto de la estructura se denomina fibra de cromatina de 100Å. Tiene un aspecto repetitivo en forma de collar de perlas, donde las perlas serían los nucleosomas, unidos por los linker.

El ADN debe encontrarse más compacto en el núcleo de los espermatozoides. En este caso, el ADN se une a proteínas de carácter más básico, denominadas Protaminas. El ADN se enrolla sobre estas proteínas, formando una estructura muy compacta, denominada estructura cristalina del ADN.

Estructura cuaternaria

La cromatina en el núcleo tiene un grosor de 300Å. La fibra de cromatina de 100Å se empaqueta formando una fibra de cromatina de 300Å. El enrollamiento que sufre el conjunto de nucleosomas recibe el nombre de solenoide.


Los solenoides se enrollan formando la cromatina del núcleo interfásico de la célula eucariota. Cuando la célula entra en división, el ADN se compacta más, formando los cromosomas.

Fuente: http://recursos.cnice.mec.es/biosfera/alumno/2bachillerato/biomol/contenidos18.htm

lunes, 10 de noviembre de 2014

Enzimas

Enzimas son moléculas de proteínas que tienen la capacidad de facilitar y acelerar las reacciones químicas que tienen lugar en los tejidos vivos, disminuyendo el nivel de la "energía de activación" propia de la reacción.
Representación de la estructura y secuencia de la enzima tripsina, un miembro de las enzimas del tipo de las proteasas. (Robert Stroud/ Universidad de California, San Francisco)
Una enzima es una proteína que actúa como catalizador de una reacción química acelerándola. Las enzimas son protagonistas fundamentales en los procesos del metabolismo celular. Las enzimas unen su sustrato en el centro reactivo o catalítico, que suele estar protegido del agua para evitar interacciones no deseadas. En el centro reactivo la disposición espacial y los tipos de cadenas laterales de aminoácidos son fundamentales para orientar correctamente el sustrato y poder interaccionar de la forma deseada para llevar a cabo la catálisis de la reacción. Las enzimas son muy selectivas en relación a los sustratos que modifican. Las enzimas suelen ser mucho más grandes que sus sustratos y en muchas ocasiones requieren de la participación de otras moléculas más pequeñas no polipeptídicas como las coenzimas (biotina, NADH entre otros) o los iones metálicos llamados cofactores.

Propiedades

Como propuso el químico sueco Jöns Jakob Berzelius en 1823, las enzimas son catalizadores típicos: son capaces de acelerar la velocidad de reacción sin ser consumidas en el proceso.

Algunas enzimas, como la pepsina y la tripsina, que intervienen en la hidrólisis de muchos tipos de proteínas, controlan muchas reacciones diferentes, mientras que otras como la ureasa, son muy específicas y sólo pueden acelerar una reacción. Otras liberan energía para la contracción cardiaca y la expansión y contracción de los pulmones. Muchas facilitan la conversión de azúcar y alimentos en distintas sustancias que el organismo precisa para la construcción de tejidos, la reposición de células sanguíneas y la liberación de energía química para mover los músculos.

La especificidad entre el sustrato y la enzima se ha concebido como la relación de una “llave” y su “cerradura”. La molécula del sustrato constituye la llave y la proteína constituye la cerradura; en la superficie de la proteína existe una zona específica, denominada sitio activo o catalítico, a la cual se une la molécula del sustrato para experimentar la transformación catalítica.
Las enzimas son muy eficaces. Por ejemplo, unos 30g de pepsina cristalina pura son capaces de digerir casi dos toneladas métricas de clara de huevo en pocas horas.

La cinética de las reacciones enzimáticas difiere de las reacciones inorgánicas simples. Cada enzima es específica de forma selectiva para la sustancia sobre la que causa la reacción, y es más eficaz a una temperatura determinada. Aunque un aumento de la temperatura puede acelerar una reacción, las enzimas son inestables cuando se calientan. La actividad catalítica de una enzima está determinada sobre todo por su secuencia de aminoácidos y por la estructura terciaria, es decir, la estructura de plegamiento tridimensional de la macromolécula.

Función de las enzimas

Las enzimas son proteínas que catalizan todas las reacciones bioquímicas. Además de su importancia como catalizadores biológicos, tienen muchos usos médicos y comerciales.

Un catalizador es una sustancia que disminuye la energía de activación de una reacción química. Al disminuir la energía de activación, se incrementa la velocidad de la reacción.

La mayoría de las reacciones de los sistemas vivos son reversibles, es decir, que en ellas se establece el equilibrio químico. Por lo tanto, las enzimas aceleran la formación de equilibrio químico, pero no afectan las concentraciones finales del equilibrio.

Clasificación de las enzimas

Clasificación de las enzimas de acuerdo a su complejidad

De acuerdo a su complejidad las enzimas se clasifican como:

Simples: Formada por una o más cadenas polipeltídicas.
Conjugadas: Contiene por lo menos un grupo no proteico enlazado en la cadena polipeltídica.
En las proteínas conjugadas podemos distinguir dos partes:

Apoenzima: Es la parte polipeptídica de la enzima.
Cofactor: Es la parte no proteica de la enzima.
La combinación de la apoenzima y el cofactor forman la holoenzima.

Los cofactores pueden ser:

Iones metálicos: Favorecen la actividad catalítica general de la enzima, si no están presentes, la enzima no actúa. Estos iones metálicos se denominan activadores. Ejemplos: Fe2+, Mg2+, Cu2+, K+, Na+ y Zn2+
La mayoría de los otros cofactores son coenzimas las cuales generalmente son compuestos orgánicos de bajo peso molecular, por ejemplo, las vitaminas del complejo “B” son coenzimas que se requieren para una respiración celular adecuada.
Clasificación de las enzimas según su actividad

Hidrolasas: Catalizan reacciones de hidrólisis. Rompen las biomoléculas con moléculas de agua. A este tipo pertenecen las enzimas digestivas.
Isomerasas: Catalizan las reacciones en las cuales un isómero se transforma en otro, es decir, reacciones de isomerización.
Ligasas: Catalizan la unión de moléculas.
Liasas: Catalizan las reacciones de adición de enlaces o eliminación, para producir dobles enlaces.
Oxidorreductasas: Catalizan reacciones de óxido-reducción. Facilitan la transferencia de electrones de una molécula a otra. Ejemplo; la glucosa, oxidasa cataliza la oxidación de glucosa a ácido glucónico.
Tansferasas: Catalizan la transferencia de un grupo de una sustancia a otra. Ejemplo: la transmetilasa es una enzima que cataliza la transferencia de un grupo metilo de una molécula a otra.

Reacciones de las enzimas

El hecho de que una reacción química sea termodinámicamente favorable depende de la diferencia de energía libre que haya entre los sustratos y los productos. Si esta diferencia es negativa, la reacción es espontánea. Aunque una reacción sea espontánea no significa que la velocidad de la reacción sea elevada, existiendo reacciones espontáneas que tardan segundos y otras que tardan horas. En las reacciones químicas sencillas la transformación de un sustrato en un producto suele pasar por un estado intermedio llamado estado de transición. Este estado de transición es muy inestable y suele necesitar aporte de energía. La velocidad de una reacción química depende de esta energía de activación. Para que se produzca una reacción química, sin intervención de enzimas, es necesario que los reactivos entren en contacto, para lo que es necesaria una concentración suficiente, y que el choque de moléculas tenga energía para superar la barrera de activación. Este es el motivo por el que la temperatura influye en el equilibrio químico. La enzima acelera la reacción química disminuyendo la energía de activación. La enzima lleva a cabo esta disminución de la barrera energética interaccionando con los elementos que participan en la reacción química estabilizándolos en el centro reactivo. Así, aumenta enormemente la probabilidad de que se produzca la reacción química ya que concentra y pone en contacto los elementos necesarios para la reacción. 

En algunas reacciones enzimáticas participan coenzimas que permiten que durante la reacción la enzima no sufra modificaciones químicas que le impidan repetir el proceso. La actividad enzimática se restaura con sólo reemplazar la coenzima y el complejo enzimático queda listo para catalizar una nueva reacción.

Además de las enzimas de naturaleza puramente proteica existen moléculas no proteicas capaces de catalizar reacciones como las ribozimas, formadas por moléculas de ARN.

Regulación enzimática

La regulación del metabolismo celular se lleva a cabo regulando la actividad enzimática. Existen varias formas de regular la actividad de una enzima que no son excluyentes entre sí. Se puede regular su concentración, modificar su conformación con ligandos activadores o inhibidores, modificar su localización celular o introducir modificaciones covalentes como metilación o fosforilación que incluso pueden llegar a alterar la enzima de forma irreversible. No todas las enzimas tienen la misma importancia en la regulación de una ruta. Suele ser especialmente clave la regulación de las enzimas que catalizan reacciones poco favorables con energía de activación elevada. En muchos casos las reacciones termodinámicamente desfavorables se acoplan a reacciones espontáneas favorables que les aportan energía. Éste es el caso de la hidrólisis del ATP (reacción favorable) asociada a los procesos de biosíntesis.
Usos de las enzimas

La fermentación alcohólica y otros procesos industriales importantes dependen de la acción de enzimas, sintetizadas por las levaduras y bacterias empleadas en el proceso de producción. Algunas enzimas se utilizan con fines médicos. En ocasiones son útiles en el tratamiento de zonas de inflamación local; la tripsina se emplea para eliminar sustancias extrañas y tejido muerto de las heridas y quemaduras.